Electric Power ›› 2024, Vol. 57 ›› Issue (8): 55-66.DOI: 10.11930/j.issn.1004-9649.202308003
• New Energy • Previous Articles Next Articles
					
													Zejia WANG(
), Minxiao HAN(
), Yiwen FAN
												  
						
						
						
					
				
Received:2023-08-01
															
							
															
							
																	Accepted:2023-10-30
															
							
																	Online:2024-08-23
															
							
							
																	Published:2024-08-28
															
							
						Supported by:Zejia WANG, Minxiao HAN, Yiwen FAN. Suppression Strategy of Sub/Super-synchronous Oscillations in Doubly-Fed Wind Farm Based on SVG Additional Current Feedback Impedance Reshaping[J]. Electric Power, 2024, 57(8): 55-66.
| 参数 | 数值 | 参数 | 数值 | |||
| 直流电压 Uwdc/kV | 1.45 | 变压器电压/kV | 35/0.69/0.69 | |||
| 交流电压 UwM/kV | 0.69 | RSC内环PI | 1.2+0.025/s | |||
| 额定容量 Sw/MW | 2 | RSC外环PI | 2+0.02/s2+0.05/s | |||
| 直流电容 Cwdc/μF | 500 | RSC锁相环PI | 2.2+0.238/s | |||
| 滤波电容 Cwf/ μF | 700 | GSC内环PI | 1+0.01/s | |||
| 滤波电感 Lwf/H | GSC外环PI | 0.4+0.01/s | ||||
| 额定频率 f1/Hz | 50 | GSC锁相环PI | 1.2+0.05/s | 
Table 1 Main parameters of DFIG
| 参数 | 数值 | 参数 | 数值 | |||
| 直流电压 Uwdc/kV | 1.45 | 变压器电压/kV | 35/0.69/0.69 | |||
| 交流电压 UwM/kV | 0.69 | RSC内环PI | 1.2+0.025/s | |||
| 额定容量 Sw/MW | 2 | RSC外环PI | 2+0.02/s2+0.05/s | |||
| 直流电容 Cwdc/μF | 500 | RSC锁相环PI | 2.2+0.238/s | |||
| 滤波电容 Cwf/ μF | 700 | GSC内环PI | 1+0.01/s | |||
| 滤波电感 Lwf/H | GSC外环PI | 0.4+0.01/s | ||||
| 额定频率 f1/Hz | 50 | GSC锁相环PI | 1.2+0.05/s | 
| 参数 | 数值 | 参数 | 数值 | |||
| 直流电压 Udc/kV | 21 | 增益系数 ks | 13 | |||
| 直流电容 Cdc/mF | 15 | Hbutt1阶数 n1 | 4 | |||
| 交流电压 U/kV | 10 | Hbutt1截止频率fc1/Hz | 1 | |||
| 交流滤波电感 L/H | 0.002 | Hbutt2阶数 n2 | 2 | |||
| 额定频率 f1/Hz | 50 | Hbutt2截止频率 fc2/Hz | 100 | |||
| 内环控制PI | 20+ | 外环控制PI | 1.0+170/s | |||
| 变压器电压/kV | 35/10 | 
Table 2 Main parameters of SVG
| 参数 | 数值 | 参数 | 数值 | |||
| 直流电压 Udc/kV | 21 | 增益系数 ks | 13 | |||
| 直流电容 Cdc/mF | 15 | Hbutt1阶数 n1 | 4 | |||
| 交流电压 U/kV | 10 | Hbutt1截止频率fc1/Hz | 1 | |||
| 交流滤波电感 L/H | 0.002 | Hbutt2阶数 n2 | 2 | |||
| 额定频率 f1/Hz | 50 | Hbutt2截止频率 fc2/Hz | 100 | |||
| 内环控制PI | 20+ | 外环控制PI | 1.0+170/s | |||
| 变压器电压/kV | 35/10 | 
| 状态 | 增益系数Ks | Hbutt2截止频率fc2/Hz | ||
| 调整前 | 13 | 100 | ||
| 调整后 | 16 | 123 | 
Table 3 Change of SVG parameters
| 状态 | 增益系数Ks | Hbutt2截止频率fc2/Hz | ||
| 调整前 | 13 | 100 | ||
| 调整后 | 16 | 123 | 
| 1 | 赵越, 严干贵, 王振洋, 等. 风火打捆经LCC-HVDC送出系统的次同步扭振分析[J]. 中国电力, 2023, 56 (6): 18- 30. | 
| ZHAO Yue, YAN Gangui, WANG Zhenyang, et al. Analysis of sub-synchronous torsional vibration of wind-thermal bundling transmission system via LCC-HVDC[J]. Electric Power, 2023, 56 (6): 18- 30. | |
| 2 | 杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56 (8): 38- 45. | 
| YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56 (8): 38- 45. | |
| 3 | 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17 (5): 39- 48. | 
| LUO Shuxin, HAN Yingsheng, YU Hao, et al. Application of grid-forming control in improving the oscillation stability of power system with high proportion renewable energy integration[J]. Southern Power System Technology, 2023, 17 (5): 39- 48. | |
| 4 | 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40 (15): 4720- 4732. | 
| MA Ningning, XIE Xiaorong, HE Jingbo, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40 (15): 4720- 4732. | |
| 5 | 袁敞, 王俊杰, 胡嘉琦, 等. 平衡频率与功率振荡的虚拟同步机惯量阻尼参数优化控制[J]. 电力科学与技术学报, 2023, 38 (4): 15- 23, 56. | 
| YUAN Chang, WANG Junjie, HU Jiaqi, et al. Optimal control of inertial damping parameters of virtual synchronous machine with balance frequency and power oscillation[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 15- 23, 56. | |
| 6 | 王进钊, 严干贵, 刘侃. 基于交替方向隐式平衡截断法的直驱风电场次同步振荡分析的模型降阶研究[J]. 发电技术, 2023, 44 (6): 850- 858. | 
| WANG Jinzhao, YAN Gangui, LIU Kan. Research on model reduction of direct drive wind farm subsynchronous oscillation analysis based on alternating direction implicit balanced truncation method[J]. Power Generation Technology, 2023, 44 (6): 850- 858. | |
| 7 |  
											AMIN M, MOLINAS M. Understanding the origin of oscillatory phenomena observed between wind farms and HVdc systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5 (1): 378- 392. 
																							 DOI  | 
										
| 8 |  
											毕天姝, 孔永乐, 肖仕武, 等. 大规模风电外送中的次同步振荡问题[J]. 电力科学与技术学报, 2012, 27 (1): 10- 15. 
																							 DOI  | 
										
|  
											BI Tianshu, KONG Yongle, XIAO Shiwu, et al. Review of sub-synchronous oscillation with large-scale wind power transmission[J]. Journal of Electric Power Science and Technology, 2012, 27 (1): 10- 15. 
																							 DOI  | 
										|
| 9 | 薛安成, 付潇宇, 乔登科, 等. 风电参与的电力系统次同步振荡机理研究综述和展望[J]. 电力自动化设备, 2020, 40 (9): 118- 128. | 
| XUE Ancheng, FU Xiaoyu, QIAO Dengke, et al. Review and prospect of research on sub-synchronous oscillation mechanism for power system with wind power participation[J]. Electric Power Automation Equipment, 2020, 40 (9): 118- 128. | |
| 10 | 薛安成, 吴雨, 王子哲, 等. 双馈风电场外送系统的中频振荡机理及其影响因素分析[J]. 电网技术, 2019, 43 (4): 1245- 1254. | 
| XUE Ancheng, WU Yu, WANG Zizhe, et al. Mechanism and influencing factor analysis of medium frequency oscillation in sending power system connected with DFIG wind farms[J]. Power System Technology, 2019, 43 (4): 1245- 1254. | |
| 11 | 马静, 沈雅琦, 杜延菱, 等. 适应宽频振荡的风电并网系统主动阻尼技术综述[J]. 电网技术, 2021, 45 (5): 1673- 1686. | 
| MA Jing, SHEN Yaqi, DU Yanling, et al. Overview on active damping technology of wind power integrated system adapting to broadband oscillation[J]. Power System Technology, 2021, 45 (5): 1673- 1686. | |
| 12 |  
											年珩, 庞博, 许国东, 等. 应对并补电网下DFIG系统高频谐振的宽频阻抗重塑策略[J]. 电力系统自动化, 2018, 42 (18): 48- 56. 
																							 DOI  | 
										
|  
											NIAN Heng, PANG Bo, XU Guodong, et al. Reshaping strategy of wide frequency impedance for DFIG system to suppress high frequency resonance under parallel compensation grid[J]. Automation of Electric Power Systems, 2018, 42 (18): 48- 56. 
																							 DOI  | 
										|
| 13 | 闫培雷, 葛兴来, 王惠民, 等. 弱电网下新能源并网逆变器锁相环参数优化设计方法[J]. 电网技术, 2022, 46 (6): 2210- 2221. | 
| YAN Peilei, GE Xinglai, WANG Huimin, et al. PLL parameter optimization design for renewable energy grid-connected inverters in weak grid[J]. Power System Technology, 2022, 46 (6): 2210- 2221. | |
| 14 | 李光辉, 王伟胜, 刘纯, 等. 直驱风电场接入弱电网宽频带振荡机理与抑制方法(二): 基于阻抗重塑的宽频带振荡抑制方法[J]. 中国电机工程学报, 2019, 39 (23): 6908- 6920, 7104. | 
| LI Guanghui, WANG Weisheng, LIU Chun, et al. Mechanism analysis and suppression method of wideband oscillation of PMSG wind farms connected to weak grid(part Ⅱ): suppression method of wideband oscillation based on impedance reshaping[J]. Proceedings of the CSEE, 2019, 39 (23): 6908- 6920, 7104. | |
| 15 | 李志军, 刘洋, 张家安. 基于双馈风机抗阻比的次同步振荡抑制策略[J]. 电力自动化设备, 2022, 42 (8): 140- 145, 152. | 
| LI Zhijun, LIU Yang, ZHANG Jiaan, et al. Sub-synchronous oscillation mitigation strategy based on DFIG's ratio of reactance to resistance[J]. Electric Power Automation Equipment, 2022, 42 (8): 140- 145, 152. | |
| 16 | 王玉芝, 王亮, 姜齐荣. 基于STATCOM的风电场SSCI附加阻尼抑制策略[J]. 电力系统自动化, 2019, 43 (15): 49- 55. | 
| WANG Yuzhi, WANG Liang, JIANG Qirong. STATCOM based supplementary damping mitigation strategy for subsynchronous control interaction in wind farms[J]. Automation of Electric Power Systems, 2019, 43 (15): 49- 55. | |
| 17 | 杨飞, 陈燕东, 符有泽, 等. 直驱风电场中SVG电压前馈阻抗重构抑制次/超同步振荡方法[J]. 电力自动化设备, 2022, 42 (8): 153- 159, 214. | 
| YANG Fei, CHEN Yandong, FU Youze, et al. SVG voltage feedforward impedance reconstruction method for suppressing sub/super-synchronous oscillation in D-PMSGs based wind farm[J]. Electric Power Automation Equipment, 2022, 42 (8): 153- 159, 214. | |
| 18 | 莫必祥, 伍文华, 陈燕东, 等. 抑制直驱风电并网系统次/超同步振荡的储能变流器有源阻尼控制方法[J]. 电网技术, 2023, 47 (6): 2380- 2391. | 
| MO Bixiang, WU Wenhua, CHEN Yandong, et al. Active damping control for power conversion system to suppress sub/super-synchronous oscillation of D-PMSG grid-connected system[J]. Power System Technology, 2023, 47 (6): 2380- 2391. | |
| 19 |  
											EL-MOURSI M S, BAK-JENSEN B, ABDEL-RAHMAN M H. Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park[J]. IEEE Transactions on Power Electronics, 2010, 25 (2): 429- 441. 
																							 DOI  | 
										
| 20 | 庞博. 双馈风力发电系统并网运行高频振荡抑制策略研究[D]. 杭州: 浙江大学, 2021. | 
| PANG Bo. Investigation on high frequency response damping method for grid connected DFIG wind power system[D]. Hangzhou: Zhejiang University, 2021. | |
| 21 | 伍文华. 新能源发电接入弱电网的宽频带振荡机理及抑制方法研究[D]. 长沙: 湖南大学, 2019. | 
| WU Wenhua. Research on wide-bandwidth oscillation mechanism and suppression methods of renewable energy power generation connected to the weak grid[D]. Changsha: Hunan University, 2019. | |
| 22 | EMAMI-NAEINI A, KOSUT R L. The generalized Nyquist criterion and robustness margins with applications[C]//2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Maui, HI, USA. IEEE, 2012: 226–231. | 
| 23 |  
											SUN J. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26 (11): 3075- 3078. 
																							 DOI  | 
										
| 24 |  
											孙瑶, 韩民晓, 黄永宁, 等. 考虑换流器外环特性的双馈风电场并网稳定性分析[J]. 电工电能新技术, 2021, 40 (2): 15- 24. 
																							 DOI  | 
										
|  
											SUN Yao, HAN Minxiao, HUANG Yongning, et al. General impedance model with out-loop for DFIG wind farm stability analysis[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40 (2): 15- 24. 
																							 DOI  | 
										
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
