中国电力 ›› 2025, Vol. 58 ›› Issue (6): 122-136.DOI: 10.11930/j.issn.1004-9649.202410057

• 新能源与储能 • 上一篇    下一篇

考虑新能源的暂态功角与电压稳定一体化评估

步雨洛1(), 吴俊勇2(), 史法顺3(), 季佳伸4()   

  1. 1. 国网能源研究院有限公司,北京 102209
    2. 北京交通大学电气工程学院,北京 100044
    3. 清华大学 电机工程与应用电子技术系,北京 100084
    4. 国网北京市电力公司检修分公司,北京 100069
  • 收稿日期:2024-10-18 发布日期:2025-06-30 出版日期:2025-06-28
  • 作者简介:
    步雨洛(2000),女,通信作者,硕士,从事人工智能、电力系统暂态稳定与控制、新能源发展研究,E-mail:b17231241@163.com
    吴俊勇(1966),男,教授,博士生导师,从事人工智能、智能电网、电力系统分析、综合能源系统研究,E-mail:wujy@bjtu.edu.cn
    史法顺(1997),男,助理研究员,从事人工智能、电力系统暂态稳定与控制研究,E-mail:shi_fashun@tsinghua.edu.cn
    季佳伸(1998),男,硕士,从事人工智能、电力系统暂态电压稳定、高压直流输电技术研究,E-mail:970038639@qq.com
  • 基金资助:
    国家电网有限公司科技项目(4000-202257056A-1-1-ZN)。

Integrated Assessment of Transient Angle Stability and Voltage Stability Considering Renewable Energy Sources

BU Yuluo1(), WU Junyong2(), SHI Fashun3(), JI Jiashen4()   

  1. 1. State Grid Energy Research Institute Co., Ltd., Beijing 102209, China
    2. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
    3. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
    4. State Grid Beijing Maintenance Company, Beijing 100069, China
  • Received:2024-10-18 Online:2025-06-30 Published:2025-06-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.4000-202257056A-1-1-ZN).

摘要:

暂态功角失稳与暂态电压失稳大多共同发生且相互影响,增加了稳定评估与紧急控制的难度。为实现稳定评估对紧急控制的全面指导性,提出了失稳模式识别方法。该方法以故障极限切除时间描述故障严重程度,通过功角失稳与电压失稳发生的先后标志主导性,以二者时间差描述耦合程度,构建了失稳模式识别四象限图。为实现在线的一体化评估,构建了基于融合卷积注意力机制模块(convolutional block attention module,CBAM)的改进卷积神经网络(convolutional neural networks,CNN)模型,提出了基于该模型的两阶段一体化稳定评估方案。最后,以新英格兰10机39节点系统为例进行仿真验证,结果表明该方法兼顾全面性、有效性及准确性;以含新能源的改进后10机39节点系统为例,说明所提方法在含新能源系统的适用性。

关键词: 暂态功角稳定, 暂态电压稳定, 卷积块注意力模块, 失稳模式, 卷积神经网络

Abstract:

Transient angle instability and transient voltage instability often occur simultaneously and interact with each other, which increases the difficulty of stability assessment and emergency control. To achieve comprehensive guidance for emergency control through stability assessment, an instability mode recongnition method is proposed. This method describes the fault severity using the critical fault clearing time, characterizes the dominance of angle instability and voltage instability based on their occurrence order, and quantifies the coupling degree with the time difference between them. A four-quadrant instability mode recongnition diagram is constructed. To achieve the integrated online assessment, an improved convolutional neural network (CNN) model based on the convolutional block attention module (CBAM) is developed, and a two-stage integrated stability assessment scheme is proposed based on this model. Finally, the New England 10-machine 39-bus system is used for simulation verification, and the results show that the proposed method can achieve comprehensiveness, effectiveness and accuracy. Further, the applicability of the proposed method in systems with renewable energy is demonstrated using a modified 10-machine 39-bus system incorporating renewable energy.

Key words: transient angle stability, transient voltage stability, convolutional block attention modul, instability mode, convolutional neural network.


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?