中国电力 ›› 2025, Vol. 58 ›› Issue (6): 122-136.DOI: 10.11930/j.issn.1004-9649.202410057
步雨洛1(), 吴俊勇2(
), 史法顺3(
), 季佳伸4(
)
收稿日期:
2024-10-18
发布日期:
2025-06-30
出版日期:
2025-06-28
作者简介:
基金资助:
BU Yuluo1(), WU Junyong2(
), SHI Fashun3(
), JI Jiashen4(
)
Received:
2024-10-18
Online:
2025-06-30
Published:
2025-06-28
Supported by:
摘要:
暂态功角失稳与暂态电压失稳大多共同发生且相互影响,增加了稳定评估与紧急控制的难度。为实现稳定评估对紧急控制的全面指导性,提出了失稳模式识别方法。该方法以故障极限切除时间描述故障严重程度,通过功角失稳与电压失稳发生的先后标志主导性,以二者时间差描述耦合程度,构建了失稳模式识别四象限图。为实现在线的一体化评估,构建了基于融合卷积注意力机制模块(convolutional block attention module,CBAM)的改进卷积神经网络(convolutional neural networks,CNN)模型,提出了基于该模型的两阶段一体化稳定评估方案。最后,以新英格兰10机39节点系统为例进行仿真验证,结果表明该方法兼顾全面性、有效性及准确性;以含新能源的改进后10机39节点系统为例,说明所提方法在含新能源系统的适用性。
步雨洛, 吴俊勇, 史法顺, 季佳伸. 考虑新能源的暂态功角与电压稳定一体化评估[J]. 中国电力, 2025, 58(6): 122-136.
BU Yuluo, WU Junyong, SHI Fashun, JI Jiashen. Integrated Assessment of Transient Angle Stability and Voltage Stability Considering Renewable Energy Sources[J]. Electric Power, 2025, 58(6): 122-136.
编号 | 数据集 | 应用场景 | ||
1 | δG VB | 第1阶段样本标注 | ||
2 | δG PeG PeG sM TeM TmM | 第2阶段样本标注 | ||
3 | VB θB | 模型训练 |
表 1 时域仿真得到的数据集
Table 1 Data sets obtained by time domain simulation
编号 | 数据集 | 应用场景 | ||
1 | δG VB | 第1阶段样本标注 | ||
2 | δG PeG PeG sM TeM TmM | 第2阶段样本标注 | ||
3 | VB θB | 模型训练 |
样本数 | 稳定(P) | 失稳(P) | ||
稳定(T) | N11 | N12 | ||
失稳(T) | N21 | N22 |
表 2 第1阶段混淆矩阵
Table 2 The first-stage confusion matrix
样本数 | 稳定(P) | 失稳(P) | ||
稳定(T) | N11 | N12 | ||
失稳(T) | N21 | N22 |
样本数 | GT(P) | LS(P) | GT or LS(P) | GT and LS(P) | ||||
GT(T) | N11 | N12 | N13 | N14 | ||||
LS(T) | N21 | N22 | N23 | N24 | ||||
GT or LS(T) | N31 | N32 | N33 | N34 | ||||
GT and LS(T) | N41 | N42 | N43 | N44 |
表 3 第2阶段混淆矩阵
Table 3 The second-stage confusion matrix
样本数 | GT(P) | LS(P) | GT or LS(P) | GT and LS(P) | ||||
GT(T) | N11 | N12 | N13 | N14 | ||||
LS(T) | N21 | N22 | N23 | N24 | ||||
GT or LS(T) | N31 | N32 | N33 | N34 | ||||
GT and LS(T) | N41 | N42 | N43 | N44 |
参数 | 具体设置 | 种类数 | ||
故障类型 | 三相短路故障 | 1 | ||
故障线路 | 交流线路(形成孤岛的线路除外) | 33 | ||
故障位置 | 10%、30%、50%、70%、90% | 5 | ||
负荷水平 | 80%、100%、120% | 3 | ||
感应电动机占比 | 50%、60%、70% | 3 | ||
故障持续时间 | 3-11周波 | 9 |
表 4 样本生成方案
Table 4 Configurations of the sample set generation
参数 | 具体设置 | 种类数 | ||
故障类型 | 三相短路故障 | 1 | ||
故障线路 | 交流线路(形成孤岛的线路除外) | 33 | ||
故障位置 | 10%、30%、50%、70%、90% | 5 | ||
负荷水平 | 80%、100%、120% | 3 | ||
感应电动机占比 | 50%、60%、70% | 3 | ||
故障持续时间 | 3-11周波 | 9 |
编号 | 故障线路 | 主导强度 | 故障严重程度 | |||
A | 31 | –0.13 | –0.055 | |||
B | 24 | 0.12 | –0.069 | |||
C | 16 | –0.04 | –0.055 | |||
D | 32 | –0.17 | –0.107 |
表 5 4个实例的相关情况
Table 5 Relevant information of the four cases
编号 | 故障线路 | 主导强度 | 故障严重程度 | |||
A | 31 | –0.13 | –0.055 | |||
B | 24 | 0.12 | –0.069 | |||
C | 16 | –0.04 | –0.055 | |||
D | 32 | –0.17 | –0.107 |
模型 | 功角评估 | 电压评估 | ||||||
A2/% | Gmean/% | A2/% | Gmean/% | |||||
DT | 94.72 | 94.67 | 94.88 | 94.82 | ||||
MLP | 95.60 | 95.81 | 95.29 | 94.94 | ||||
GRU | 97.05 | 97.08 | 96.97 | 96.95 | ||||
RF | 97.08 | 97.09 | 97.19 | 97.23 | ||||
CNN | 97.27 | 97.28 | 97.31 | 97.43 | ||||
CBAM-CNN | 97.83 | 97.87 | 97.68 | 97.65 |
表 6 第1阶段模型训练结果对比
Table 6 Comparison of the first-stage model training results
模型 | 功角评估 | 电压评估 | ||||||
A2/% | Gmean/% | A2/% | Gmean/% | |||||
DT | 94.72 | 94.67 | 94.88 | 94.82 | ||||
MLP | 95.60 | 95.81 | 95.29 | 94.94 | ||||
GRU | 97.05 | 97.08 | 96.97 | 96.95 | ||||
RF | 97.08 | 97.09 | 97.19 | 97.23 | ||||
CNN | 97.27 | 97.28 | 97.31 | 97.43 | ||||
CBAM-CNN | 97.83 | 97.87 | 97.68 | 97.65 |
模型 | A4/% | Ec/% | ||
DT | 91.27 | 6.05 | ||
MLP | 92.14 | 5.11 | ||
GRU | 93.28 | 4.52 | ||
RF | 93.71 | 4.48 | ||
CNN | 94.18 | 3.61 | ||
CBAM-CNN | 95.13 | 2.28 |
表 7 第2阶段模型训练结果对比
Table 7 Comparison of the second-stage model training results
模型 | A4/% | Ec/% | ||
DT | 91.27 | 6.05 | ||
MLP | 92.14 | 5.11 | ||
GRU | 93.28 | 4.52 | ||
RF | 93.71 | 4.48 | ||
CNN | 94.18 | 3.61 | ||
CBAM-CNN | 95.13 | 2.28 |
算法 | 功角稳定 | 电压稳定 | ||||||
A2/% | Gmean/% | A2/% | Gmean/% | |||||
CBAM-CNN | 97.79 | 97.72 | 97.49 | 97.42 |
表 8 改进后系统的第1阶段评估结果
Table 8 The first-stage assessment results of the improved system
算法 | 功角稳定 | 电压稳定 | ||||||
A2/% | Gmean/% | A2/% | Gmean/% | |||||
CBAM-CNN | 97.79 | 97.72 | 97.49 | 97.42 |
算法 | A4/% | Ec/% | ||
CBAM-CNN | 94.72 | 4.27 |
表 9 改进后系统的第2阶段评估结果
Table 9 The second-stage assessment results of the improved system
算法 | A4/% | Ec/% | ||
CBAM-CNN | 94.72 | 4.27 |
1 | 董武, 张健, 周勤勇, 等. 中国电力系统安全稳定性演化综述[J]. 中国电力, 2025, 58 (1): 115- 127. |
DONG Wu, ZHANG Jian, ZHOU Qinyong, et al. An overview of the evolution of security and stability of China’s power system[J]. Electric Power, 2025, 58 (1): 115- 127. | |
2 |
AMJADY N. A framework of reliability assessment with consideration effect of transient and voltage stabilities[J]. IEEE Transactions on Power Systems, 2004, 19 (2): 1005- 1014.
DOI |
3 | 叶小宁, 王彩霞, 李琼慧, 等. 国外新能源高占比电力系统电力供应保障措施及启示[J]. 中国电力, 2024, 57 (4): 61- 67. |
YE Xiaoning, WANG Caixia, LI Qionghui, et al. Power supply ensuring measures and implications of foreign countries' power systems with high proportion of new energy[J]. Electric Power, 2024, 57 (4): 61- 67. | |
4 |
CARRERAS B A, NEWMAN D E, DOBSON I. North American blackout time series statistics and implications for blackout risk[J]. IEEE Transactions on Power Systems, 2016, 31 (6): 4406- 4414.
DOI |
5 | OBUZ S, AYAR M, TREVIZAN R D, et al. Renewable and energy storage resources for enhancing transient stability margins: a PDE-based nonlinear control strategy[J]. International Journal of Electrical Power & Energy Systems, 2020, 116, 105510. |
6 | 汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39 (1): 2- 13, 315. |
TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39 (1): 2- 13, 315. | |
7 |
SHI Z T, YAO W, LI Z P, et al. Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions[J]. Applied Energy, 2020, 278, 115733.
DOI |
8 | YANG H, ZHANG W, SHI F, et al. PMU-based model-free method for transient instability prediction and emergency generator-shedding control[J]. International Journal of Electrical Power & Energy Systems, 2019, 105, 381- 393. |
9 |
DONG Y P, XIE X R, WANG K, et al. An emergency-demand-response based under speed load shedding scheme to improve short-term voltage stability[J]. IEEE Transactions on Power Systems, 2017, 32 (5): 3726- 3735.
DOI |
10 | 张若愚, 吴俊勇, 李宝琴, 等. 基于迁移学习的电力系统暂态稳定自适应预测[J]. 电网技术, 2020, 44 (6): 2196- 2205. |
ZHANG Ruoyu, WU Junyong, LI Baoqin, et al. Self-adaptive power system transient stability prediction based on transfer learning[J]. Power System Technology, 2020, 44 (6): 2196- 2205. | |
11 |
吴俊勇, 张若愚, 季佳伸, 等. 计及漏判/误判代价的两阶段电力系统暂态稳定预测方法[J]. 电力系统自动化, 2020, 44 (24): 44- 52.
DOI |
WU Junyong, ZHANG Ruoyu, JI Jiashen, et al. Two-stage transient stability prediction method of power system considering cost of misdetection and false alarm[J]. Automation of Electric Power Systems, 2020, 44 (24): 44- 52.
DOI |
|
12 | 刘建锋, 姚晨曦, 陈乐乐. 基于门控时空图神经网络的电力系统暂态稳定评估[J]. 电力科学与技术学报, 2023, 38 (2): 214- 223. |
LIU Jianfeng, YAO Chenxi, CHEN Lele. Power system transient stability assessment based on gating spatial temporal graph neural network[J]. Journal of Electric Power Science and Technology, 2023, 38 (2): 214- 223. | |
13 | 张建新, 蔡锱涵, 李诗旸, 等. 利用网络等值进行图降维的图注意力暂态功角稳定评估模型[J]. 南方电网技术, 2024, 18 (4): 30- 40. |
ZHANG Jianxin, CAI Zihan, LI Shiyang, et al. Transient power angle stability evaluation model for graph attention using network equivalence for graph dimensionality reduction[J]. Southern Power System Technology, 2024, 18 (4): 30- 40. | |
14 |
张晓英, 高金, 王琨, 等. 基于电压时间序列的电力系统暂态电压稳定分析[J]. 智慧电力, 2021, 49 (3): 51- 58.
DOI |
ZHANG Xiaoying, GAO Jin, WANG Kun, et al. Transient voltage stability analysis of power system based on voltage time series[J]. Smart Power, 2021, 49 (3): 51- 58.
DOI |
|
15 |
SU H Y, LIU T Y. Enhanced-online-random-forest model for static voltage stability assessment using wide area measurements[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 6696- 6704.
DOI |
16 | 周挺, 杨军, 詹祥澎, 等. 一种数据驱动的暂态电压稳定评估方法及其可解释性研究[J]. 电网技术, 2021, 45 (11): 4416- 4425. |
ZHOU Ting, YANG Jun, ZHAN Xiangpeng, et al. Data-driven method and interpretability analysis for transient voltage stability assessment[J]. Power System Technology, 2021, 45 (11): 4416- 4425. | |
17 | 朱林, 张健, 陈达, 等. 面向暂态电压稳定评估的卷积神经网络输入特征构建方法[J]. 电力系统自动化, 2022, 46 (1): 85- 93. |
ZHU Lin, ZHANG Jian, CHEN Da, et al. Construction method for input features of convolutional neural network for transient voltage stability assessment[J]. Automation of Electric Power Systems, 2022, 46 (1): 85- 93. | |
18 | 黎晓, 刘崇茹, 辛蜀骏, 等. 暂态功角稳定与暂态电压稳定的耦合机理分析与耦合强度评估指标[J]. 中国电机工程学报, 2021, 41 (15): 5091- 5107. |
LI Xiao, LIU Chongru, XIN Shujun, et al. Coupling mechanism analysis and coupling strength evaluation index of transient power angle stability and transient voltage stability[J]. Proceedings of the CSEE, 2021, 41 (15): 5091- 5107. | |
19 | 吴为, 汤涌, 孙华东, 等. 电力系统暂态功角失稳与暂态电压失稳的主导性识别[J]. 中国电机工程学报, 2014, 34 (31): 5610- 5617. |
WU Wei, TANG Yong, SUN Huadong, et al. The recognition of principal mode between rotor angle instability and transient voltage instability[J]. Proceedings of the CSEE, 2014, 34 (31): 5610- 5617. | |
20 | WANG Y H, SUN Y J, MEI S W. A method of distinguishing short-term voltage stability from rotor angle stability and its application[C]//IEEE PES Innovative Smart Grid Technologies. Tianjin, China. IEEE, 2012: 1–5. |
21 |
HAN T, CHEN Y B, MA J, et al. Surrogate modeling-based multi-objective dynamic VAR planning considering short-term voltage stability and transient stability[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 622- 633.
DOI |
22 | 顾卓远, 汤涌. 基于响应信息的电压与功角稳定实时紧急控制方案[J]. 中国电机工程学报, 2014, 34 (28): 4876- 4885. |
GU Zhuoyuan, TANG Yong. Response-information based real-time power system voltage stability and angle stability emergency control scheme[J]. Proceedings of the CSEE, 2014, 34 (28): 4876- 4885. | |
23 | 孙黎霞, 彭嘉杰, 白景涛, 等. 结合图嵌入算法的电力系统多任务暂态稳定评估[J]. 电力系统自动化, 2022, 46 (2): 83- 91. |
SUN Lixia, PENG Jiajie, BAI Jingtao, et al. Multi-task transient stability assessment of power system incorporating graph embedding algorithm[J]. Automation of Electric Power Systems, 2022, 46 (2): 83- 91. | |
24 | 史法顺, 吴俊勇, 季佳伸, 等. 基于深度学习的电力系统暂态电压与暂态功角稳定一体化超前评估[J]. 电网技术, 2023, 47 (2): 741- 758. |
SHI Fashun, WU Junyong, JI Jiashen, et al. Integrated advance assessment of power system transient voltage and transient angle stability based on deep learning[J]. Power System Technology, 2023, 47 (2): 741- 758. | |
25 | 史法顺, 吴俊勇, 吴昊衍, 等. 基于深度学习的电力系统暂态功角与暂态电压稳定裕度一体化评估[J]. 电网技术, 2023, 47 (2): 731- 740. |
SHI Fashun, WU Junyong, WU Haoyan, et al. Integrated evaluation of power system transient power angle and transient voltage stability margin based on deep learning[J]. Power System Technology, 2023, 47 (2): 731- 740. | |
26 | 石重托, 姚伟, 黄彦浩, 等. 基于SE-CNN和仿真数据的电力系统主导失稳模式智能识别[J]. 中国电机工程学报, 2022, 42 (21): 7719- 7731. |
SHI Zhongtuo, YAO Wei, HUANG Yanhao, et al. Power system dominant instability mode identification based on convolutional neural networks with squeeze and excitation block and simulation data[J]. Proceedings of the CSEE, 2022, 42 (21): 7719- 7731. | |
27 | ZHANG R F, YAO W, SHI Z T, et al. A graph attention networks-based model to distinguish the transient rotor angle instability and short-term voltage instability in power systems[J]. International Journal of Electrical Power & Energy Systems, 2022, 137, 107783. |
28 | ZHOU Y Z, XU T, YE L, et al. Transient rotor angle and voltage stability discrimination based on deep convolutional neural network with multiple inputs[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC). Wuhan, China. IEEE, 2021: 1–6. |
29 | LASHGARI M, SHAHRTASH S M. Fast online decision tree-based scheme for predicting transient and short-term voltage stability status and determining driving force of instability[J]. International Journal of Electrical Power & Energy Systems, 2022, 137, 107738. |
30 |
KUNDUR P, PASERBA J, AJJARAPU V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems, 2004, 19 (3): 1387- 1401.
DOI |
31 | 张海. 基于扩展等面积法的电力系统暂态稳定分析[D]. 太原: 太原理工大学, 2006. |
ZHANG Hai. Power system transient stability analysis based on EEAC method[D]. Taiyuan: Taiyuan University of Technology, 2006. | |
32 | 顾卓远, 汤涌, 易俊, 等. 电力系统功角失稳与局部感应电动机失稳相互影响机理分析[J]. 电网技术, 2017, 41 (8): 2499- 2505. |
GU Zhuoyuan, TANG Yong, YI Jun, et al. Study on mechanism of interrelationship between power system angle stability and induction motor stability[J]. Power System Technology, 2017, 41 (8): 2499- 2505. | |
33 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing2018: 3–19. |
34 |
李宝琴, 吴俊勇, 邵美阳, 等. 基于集成深度置信网络的精细化电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44 (6): 17- 26.
DOI |
LI Baoqin, WU Junyong, SHAO Meiyang, et al. Refined transient stability evaluation for power system based on ensemble deep belief network[J]. Automation of Electric Power Systems, 2020, 44 (6): 17- 26.
DOI |
[1] | 李科, 潘庭龙, 许德智. 基于MSCNN-BiGRU-Attention的短期电力负荷预测[J]. 中国电力, 2025, 58(6): 10-18. |
[2] | 李鹏, 祖文静, 刘一欣, 田春筝, 郝元钊, 李慧璇. 基于不完全量测数据的配电网状态估计方法[J]. 中国电力, 2025, 58(5): 1-10. |
[3] | 沈鑫, 王钢, 赵毅涛, 骆钊, 李钊, 杨晓华. 融合SENet注意力机制和GA-CNN的非侵入式负荷识别方法[J]. 中国电力, 2025, 58(5): 33-42. |
[4] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[5] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
[6] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
[7] | 王大兴, 宁妍, 汪敬培, 徐洋, 毕峻, 周铭标, 王鹏. 构建新型电力系统背景下的微电网鲁棒简化建模[J]. 中国电力, 2024, 57(1): 148-157. |
[8] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
[9] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[10] | 武小琳, 栾凌, 潘连武, 李海龙. 基于LM-CNN的输变电工程造价自动计算模型[J]. 中国电力, 2023, 56(2): 157-163. |
[11] | 陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105. |
[12] | 冯裕祺, 李辉, 李利娟, 周彦博, 谭貌, 彭寒梅. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55(7): 163-171. |
[13] | 徐艳春, 蒋伟俊, 孙思涵, MI Lu. 含高渗透率风电的配电网暂态电压量化评估方法[J]. 中国电力, 2022, 55(7): 152-162. |
[14] | 沙骏, 徐雨森, 刘冲冲, 冯定东, 胥峥, 臧海祥. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55(12): 61-68. |
[15] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||