中国电力 ›› 2023, Vol. 56 ›› Issue (6): 209-218.DOI: 10.11930/j.issn.1004-9649.202208117

• 信息与通信 • 上一篇    

基于语义信息距离解耦的变电运维多类别缺陷图像检测

张鑫1,2, 叶俊杰3, 崔瑶1,2, 黄鑫1,2, 仲林林3   

  1. 1. 南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京 211106;
    2. 智能电网保护和运行控制国家重点实验室,江苏 南京 211106;
    3. 东南大学 电气工程学院,江苏 南京 210096
  • 收稿日期:2022-08-30 修回日期:2022-11-18 发布日期:2023-07-04
  • 作者简介:张鑫(1987—),男,硕士,高级工程师,从事电力系统通信、电力智能运维技术及应用研究,E-mail:zhangxin4@sgepri.sgcc.com.cn;仲林林(1990—),男,通信作者,博士,副研究员,从事高电压技术、放电等离子体技术、人工智能技术研究,E-mail:linlin@seu.edu.cn
  • 基金资助:
    国网电力科学研究院有限公司科技项目(524606210002)。

Decoupled Sematic Distance Based Multi-class Defect Scene Detecting for Substations

ZHANG Xin1,2, YE Junjie3, CUI Yao1,2, HUANG Xin1,2, ZHONG Linlin3   

  1. 1. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China;
    2. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106, China;
    3. School of Electrical Engineering, Southeast University, Nanjing 210096, China
  • Received:2022-08-30 Revised:2022-11-18 Published:2023-07-04
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Electric Power Research Institute (No.524606210002).

摘要: 变电站设备种类繁多、缺陷类型复杂、特征差异大,传统的基于深度学习的缺陷图像检测模型难以同时有效处理不同设备的多种缺陷。为此,提出了一种基于语义信息距离解耦的缺陷图像检测模型(sematic-distance based decoupling detection model,SDB-DDM)。首先对缺陷类别进行语义信息聚簇,构建解耦式网络结构,然后对网络输出进行加权锚框融合,并在损失函数中加入局部预测损失以提升预测能力,同时提出解耦式非极大值抑制策略以加快模型推理速度。该模型可根据缺陷类别进行自适应调整,以适用变电运维多类别缺陷图像检测的应用场景。实验结果显示,该模型的平均精度均值达到了69.68%。同平台下相较于目前性能最佳的目标检测模型(YOLOX),精度提升了1.36个百分点,参数量下降了5%,推理速度提升了34%。

关键词: 变电运维场景, 缺陷检测, 深度学习, 语义信息距离, 解耦式模型

Abstract: Due to the complexity and differences of defect types in substations, traditional deep learning models for defects detection lack comprehensive response ability. It proposes a sematic distance based decoupling detection model. Firstly, the decoupled model structure is determined by clustering defect classes according to the semantic information distance between each other. Then, the weighted anchor fusion and local prediction loss techniques are used to improve the model performance. Meanwhile, the decoupled non-maximum suppression strategy is proposed to accelerate the model inference process. The experiment results show that the mean average precision of the model reaches 69.68%. Compared with YOLOX, which has been recognized as the best real-time object detection model, the accuracy of proposed model is improved by 1.36 percentage points, the parameter quantity is reduced by 5%, and the inference speed is improved by 34%.

Key words: substation maintain and operation scene, defect detection, deep learning, semantic information distance, decoupled model