[1] 罗琨, 时永肖, 李正新, 等. 智能变电站继电保护装置寿命模型及其辨识方法[J]. 智慧电力, 2021, 49(1): 96–101 LUO Kun, SHI Yongxiao, LI Zhengxin, et al. Life model and identification method of relay protection device in smart substation[J]. Smart Power, 2021, 49(1): 96–101 [2] 李肖博, 于杨, 姚浩, 等. 新一代智能变电站采控装置[J]. 中国电力, 2022, 55(4): 85–92 LI Xiaobo, YU Yang, YAO Hao, et al. Sample-control-device of smart substation[J]. Electric Power, 2022, 55(4): 85–92 [3] 李泽文, 王志刚, 穆利智, 等. 变电站智能安监可穿戴设备设计[J]. 电力科学与技术学报, 2022, 37(4): 217–226 LI Zewen, WANG Zhigang, MU Lizhi, et al. Design of wearable equipment for substation intelligent safety supervision[J]. Journal of Electric Power Science and Technology, 2022, 37(4): 217–226 [4] 李自若, 沈曦, 张亦兵, 等. 基于深度强化学习的智慧变电站网络异常检测方法[J]. 南方电网技术, 2021, 15(6): 98–105 LI Ziruo, SHEN Xi, ZHANG Yibing, et al. Network anomaly detection method for smart substation based on deep reinforcement learning[J]. Southern Power System Technology, 2021, 15(6): 98–105 [5] 高熠, 田联房, 杜启亮. 基于Mask R-CNN的复合绝缘子过热缺陷检测[J]. 中国电力, 2021, 54(1): 135–141 GAO Yi, TIAN Lianfang, DU Qiliang. Overheating defect detection of composite insulator based on mask R-CNN[J]. Electric Power, 2021, 54(1): 135–141 [6] 王帅, 姜敏, 李江林, 等. 全维度智能变电站设备状态监测关键技术研究[J]. 电测与仪表, 2020, 57(7): 82–86 WANG Shuai, JIANG Min, LI Jianglin, et al. Research on key technologies of condition monitoring of full-dimensional intelligent substation equipment[J]. Electrical Measurement & Instrumentation, 2020, 57(7): 82–86 [7] 刘颖, 胡楠, 杨壮观, 等. 基于深度学习的电网监控视频中工作人员检测与识别[J]. 沈阳工业大学学报, 2019, 41(5): 544–548 LIU Ying, HU Nan, YANG Zhuangguan, et al. Detection and identification of staff in power grid monitoring video based on deep learning[J]. Journal of Shenyang University of Technology, 2019, 41(5): 544–548 [8] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(增刊1): 302–310 WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302–310 [9] 王凯, 王健, 刘刚, 等. 基于RetinaNet和类别平衡采样方法的销钉缺陷检测[J]. 电力工程技术, 2019, 38(4): 80–85 WANG Kai, WANG Jian, LIU Gang, et al. Defect detection of pins based on RetinaNet and class balanced sampling methods[J]. Electric Power Engineering Technology, 2019, 38(4): 80–85 [10] 黄锐勇, 戴美胜, 郑跃斌, 等. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2): 147–155 HUANG Ruiyong, DAI Meisheng, ZHENG Yuebin, et al. Defect detection of power equipment by infrared image[J]. Electric Power, 2021, 54(2): 147–155 [11] 位一鸣, 童力, 罗麟, 等. 基于卷积神经网络的主变压器外观缺陷检测方法[J]. 浙江电力, 2019, 38(4): 61–68 WEI Yiming, TONG Li, LUO Lin, et al. An exterior defects detecting method of main transformer based on convolutional neural networks[J]. Zhejiang Electric Power, 2019, 38(4): 61–68 [12] 张晶焯, 佘楚云, 伍国兴, 等. 基于增强特征金字塔和可变形卷积的绝缘子缺陷检测[J]. 电力工程技术, 2021, 40(4): 155–160 ZHANG Jingzhuo, SHE Chuyun, WU Guoxing, et al. Insulator defect detection based on enhanced feature pyramid and deformable convolution[J]. Electric Power Engineering Technology, 2021, 40(4): 155–160 [13] 罗鹏, 王波, 马恒瑞, 等. 基于组合式目标检测框架的低漏报率缺陷识别方法[J]. 高电压技术, 2021, 47(2): 454–464 LUO Peng, WANG Bo, MA Hengrui, et al. Defect recognition method with low false negative rate based on combined target detection framework[J]. High Voltage Engineering, 2021, 47(2): 454–464 [14] 顾晓东, 唐丹宏, 黄晓华. 基于深度学习的电网巡检图像缺陷检测与识别[J]. 电力系统保护与控制, 2021, 49(5): 91–97 GU Xiaodong, TANG Danhong, HUANG Xiaohua. Deep learning-based defect detection and recognition of a power grid inspection image[J]. Power System Protection and Control, 2021, 49(5): 91–97 [15] 应樱. 基于改进Faster R-CNN的变电站设备缺陷检测算法研究[D]. 杭州: 浙江大学, 2021. YING Ying. Research on defect detection algorithm of substation equipment based on improved Faster R-CNN[D]. Hangzhou: Zhejiang University, 2021. [16] 尹思宇. 深度学习在变电站电力设备缺陷检测中的应用研究[D]. 成都: 电子科技大学, 2020. YIN Siyu. Research on application of deep learning in defect detection of substation power equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [17] 徐海洋. 变电站设备表面缺陷图像识别关键技术研究[D]. 南宁: 广西大学, 2021. XU Haiyang. Research on key technologies of image recognition for surface defects of substation equipment[D]. Nanning: Guangxi University, 2021. [18] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. 2021: arXiv: 2107.08430.https://arxiv.org/abs/2107.08430. [19] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA. IEEE, 2020: 1571–1580. [20] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: 2004.10934.https://arxiv.org/abs/2004.10934. [21] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. 2018: arXiv: 1804.02767.https://arxiv.org/abs/1804.02767. [22] SALEH S, PAUL M, GREG F. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring[J]. Ecological Informatics, 2020, 57: 101085. [23] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. [24] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 5562–5570. [25] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2020: 6568–6577.
|