[1] 中华人民共和国生态环境部. 中华人民共和国气候变化第二次两年更新报告[R]. 北京:中华人民共和国生态环境部, 2018. [2] 全球能源互联网发展合作组织. 中国 2060年前碳中和研究报告[R]. 北京:全球能源互联网发展合作组织, 2020. [3] LI J, LIU F, LI Z Y, et al. Grid-side flexibility of power systems in integrating large-scale renewable generations:a critical review on concepts, formulations and solution approaches[J]. Renewable and Sustainable Energy Reviews, 2018, 93:272-284. [4] 李海波, 鲁宗相, 乔颖. 源荷储一体化的广义灵活电源双层统筹规划[J]. 电力系统自动化, 2017, 41(21):46-54, 104 LI Haibo, LU Zongxiang, QIAO Ying. Bi-level optimal planning of generation-load-storage integrated generalized flexibility resource[J]. Automation of Electric Power Systems, 2017, 41(21):46-54, 104 [5] 江千军,王磊,桂前进,等. 考虑多时间尺度灵活性的含大规模风电电力系统机组组合研究[J]. 智慧电力, 2021, 49(1):35-41,70 WANG Qianjun, WANG Lei, GUI Qianjin, et al. Power system unit commitment with large-scale wind power considering multi-time scale output flexibility[J]. Smart Power, 2021, 49(1):35-41,70 [6] FREW B A, BECKER S, DVORAK M J, et al. Flexibility mechanisms and pathways to a highly renewable US electricity future[J]. Energy, 2016, 101:65-78. [7] 洪海生. 应用于平抑风电功率波动的多类型储能系统容量配置与协调控制研究[D]. 杭州:浙江大学, 2013. HONG Haisheng. Research on capacity configuration and coordinated control of hybrid energy storage system for smoothing out wind power fluctuations[D]. Hangzhou:Zhejiang University, 2013. [8] 崔红芬,杨波,蒋叶,等. 基于模糊控制和SOC自恢复储能参与二次调频控制策略[J]. 电力系统保护与控制, 2019, 47(22):89-97 CUI Hongfen, YANG Bo, JIANG Ye, et al. Strategy based on fuzzy control and self adaptive modification of SOC involved in secondary frequency regulation with battery energy storage[J]. Power System Protection and Control, 2019, 47(22):89-97 [9] 张明霞, 闫涛, 来小康, 等. 电网新功能形态下储能技术的发展愿景和技术路径[J]. 电网技术, 2018, 42(5):1370-1377 ZHANG Mingxia, YAN Tao, LAI Xiaokang, et al. Technology vision and route of energy storage under new power grid function configuration[J]. Power System Technology, 2018, 42(5):1370-1377 [10] 全球能源互联网发展合作组织. 大规模储能技术发展路线图[R]. 北京:全球能源互联网发展合作组织, 2020. [11] 任大伟, 金晨, 侯金鸣, 等. 基于时序运行模拟的新能源配置储能替代火电规划模型[J]. 中国电力, 2021, 54(7):18-26 REN Dawei, JIN Chen, HOU Jinming, et al. Planning model for renewable energy with energy storage replacing thermalpower based on time series operation simulation[J]. Electric Power, 2021, 54(7):18-26 [12] 郑乐, 胡伟, 陆秋瑜, 等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16):2533-2543 ZHENG Le, HU Wei, LU Qiuyu, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16):2533-2543 [13] 罗庆,张新燕,罗晨,等. 新能源发电中储能综合利用的优化评估[J]. 智慧电力, 2020, 48(9):51-55,62 LUO Qing, ZHANG Xinyan, LUO Chen, et al. Optimal evaluation of energy storage comprehensive utilization in new energy generation[J]. Smart Power, 2020, 48(9):51-55,62 [14] 王耀华, 焦冰琦, 张富强, 等. 计及高比例可再生能源运行特性的中长期电力发展分析[J]. 电力系统自动化, 2017, 41(21):9-16 WANG Yaohua, JIAO Bingqi, ZHANG Fuqiang, et al. Medium and long-term electric power development considering operating characteristics of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(21):9-16 [15] YANG P, NEHORAI A. Joint optimization of hybrid energy storage and generation capacity with renewable energy[J]. IEEE Transactions on Smart Grid, 2014, 5(4):1566-1574. [16] 李建林,李雅欣,周喜超,等. 储能商业化应用政策解析[J]. 电力系统保护与控制, 2020, 48(19):168-178 LI Jianlin, LI Yaxin, ZHOU Xichao, et al. Analysis of energy storage policy in commercial application[J]. Power System Protection and Control, 2020, 48(19):168-178 [17] 姜海洋, 杜尔顺, 金晨, 等. 高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J]. 中国电机工程学报, 2021, 41(6):2101-2115 JIANG Haiyang, DU Ershun, JIN Chen, et al. Optimal planning of multi-time scale energy storage capacity of cross-national interconnected power system with high proportion of clean energy[J]. Proceedings of the CSEE, 2021, 41(6):2101-2115 [18] 张宁, 代红才, 胡兆光, 等. 考虑系统灵活性约束与需求响应的源网荷协调规划模型[J]. 中国电力, 2019, 52(2):61-69 ZHANG Ning, DAI Hongcai, HU Zhaoguang, et al. A source-grid-load coordinated planning model considering system flexibility constraints and demand response[J]. Electric Power, 2019, 52(2):61-69 [19] 徐唐海, 鲁宗相, 乔颖, 等. 源荷储多类型灵活性资源协调的高比例可再生能源电源规划[J]. 全球能源互联网, 2019, 2(1):27-34 XU Tanghai, LU Zongxiang, QIAO Ying, et al. High penetration of renewable energy power planning considering coordination of source-load-storage multi-type flexible resources[J]. Journal of Global Energy Interconnection, 2019, 2(1):27-34 [20] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13):147-158 LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automati on of Electric Power Systems, 2016, 40(13):147-158 [21] 李佳明, 李文启, 鲁宗相, 等. 考虑系统灵活性的储能-输电线路扩展联合规划[J]. 中国电力, 2021, 54(4):158-167 LI Jiaming, LI Wenqi, LU Zongxiang, et al. Joint expansion planning of energy storage and transmission considering power system flexibility[J]. Electric Power, 2021, 54(4):158-167 [22] 杨修宇, 穆钢, 柴国峰, 等. 考虑灵活性供需平衡的源-储-网一体化规划方法[J]. 电网技术, 2020, 44(9):3238-3246 YANG Xiuyu, MU Gang, CHAI Guofeng, et al. Source-storage-grid integrated planning considering flexible supply-demand balance[J]. Power System Technology, 2020, 44(9):3238-3246 [23] 鲁宗相, 李昊, 乔颖. 从灵活性平衡视角的高比例可再生能源电力系统形态演化分析[J]. 全球能源互联网, 2021, 4(1):12-18 LU Zongxiang, LI Hao, QIAO Ying. Morphological evolution of power systems with high share of renewable energy generations from the perspective of flexibility balance[J]. Journal of Global Energy Interconnection, 2021, 4(1):12-18 [24] 清华大学. 电力规划决策与评估系统技术手册[R]. 北京:清华大学, 2019. [25] 全球能源互联网发展合作组织. 清洁能源发电技术发展与展望[M]. 北京:中国电力出版社, 2020.
|