[1] JIE D F, XU X Y, GUO F. The future of coal supply in China based on non-fossil energy development and carbon price strategies[J]. Energy, 2021, 220: 119644. [2] 帅永, 赵斌, 蒋东方, 等. 中国燃煤高效清洁发电技术现状与展望[J]. 热力发电, 2022, 51(1): 1–10 SHUAI Yong, ZHAO Bin, JIANG Dongfang, et al. Status and prospect of coal-fired high efficiency and clean power generation technology in China[J]. Thermal Power Generation, 2022, 51(1): 1–10 [3] 姜红丽, 刘羽茜, 冯一铭, 等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术, 2022, 43(1): 54–64 JIANG Hongli, LIU Yuxi, FENG Yiming, et al. Analysis of power generation technology trend in 14 th five-year plan under the background of carbon peak and carbon neutrality[J]. Power Generation Technology, 2022, 43(1): 54–64 [4] 徐静馨, 朱法华, 王圣, 等. 超低排放燃煤电厂和燃气电厂综合对比[J]. 中国电力, 2020, 53(2): 164–172,179 XU Jingxin, ZHU Fahua, WANG Sheng, et al. Comprehensive comparison of ultra-low emission coal-fired power plants and gas-fired power plants[J]. Electric Power, 2020, 53(2): 164–172,179 [5] YU J D, JIANG C Y, GUAN Q Q, et al. Conversion of low-grade coals in sub-and supercritical water: a review[J]. Fuel, 2018, 217: 275–284. [6] LU H Y, WEI X Y, YU R, et al. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy & Fuels, 2011, 25(6): 2741–2745. [7] 周建明, 胡秀秀, 王奕唯, 等. 胜利褐煤超临界乙醇脱氧实验研究[J]. 洁净煤技术, 2014, 20(6): 9–12,18 ZHOU Jianming, HU Xiuxiu, WANG Yiwei, et al. Experimental study of supercritical ethanol deoxygenation of shengli lignite[J]. Clean Coal Technology, 2014, 20(6): 9–12,18 [8] SHUI H F, JIANG Q Q, CAI Z Y, et al. Co-liquefaction of rice straw and coal using different catalysts[J]. Fuel, 2013, 109: 9–13. [9] WANG Z C, SHUI H F, ZHU Y N, et al. Catalysis of SO42-/ZrO2 solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885–889. [10] SHISHIDO M, MASHIKO T, ADSCHIRI T, et al. The gasification reactivity of residual coal chars from supercritical fluid extraction of coal[J]. Fuel, 1991, 70(4): 539–543. [11] OKOLIE J A, NANDA S, DALAI A K, et al. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109546. [12] DUAN P G, JIN B B, XU Y P, et al. Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol[J]. Chemical Engineering Journal, 2015, 269: 262–271. [13] 夏凤高. 褐煤超临界水催化气化制甲烷[D]. 昆明: 昆明理工大学, 2013. [14] JIN H, ZHAO X, GUO S M, et al. Investigation on linear description of the char conversion for the process of supercritical water gasification of Yimin lignite[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16070–16076. [15] HANTOKO D, KANCHANATIP E, YAN M, et al. Co-gasification of sewage sludge and lignite coal in supercritical water for H2 production: a thermodynamic modelling approach[J]. Energy Procedia, 2018, 152: 1284–1289. [16] CAO C Q, HE Y Y, WANG G Y, et al. Co-gasification of alkaline black liquor and coal in supercritical water at high temperatures (600-750 ℃)[J]. Energy & Fuels, 2017, 31(12): 13585–13592. [17] GE Z W, JIN H, GUO L J. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: explore the way to complete gasification of coal[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19583–19592. [18] GE Z W, GUO L J, JIN H. Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: the study on reaction kinetics[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9660–9666. [19] GE Z W, GUO L J, JIN H. Catalytic supercritical water gasification mechanism of coal[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9504–9511. [20] 苗海军. 超临界水中煤气化制氢热力发电系统的构建以及能量转化机理分析[D]. 西安: 西安建筑科技大学, 2014. MIAO Haijun. A novel power generation system based on coal gasification in supercritical water and principle of its energy conversion[D]. Xi'an: Xi'an University of Architecture and Technology, 2014. [21] 禹汭宏. 两种新型制氢方法的对比研究[D]. 西安: 西安建筑科技大学, 2013. YU Ruihong. A comparative study of two new hydrogen production methods[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. [22] 王树众, 王亮, 公彦猛, 等. 煤的超临界水热氧化反应动力学及系统热能的研究[J]. 动力工程, 2009, 29(6): 565–570 WANG Shuzhong, WANG Liang, GONG Yanmeng, et al. Studies on reaction kinetics of coal's thermal oxidation in supercritical water and thermal energy of the system[J]. Journal of Power Engineering, 2009, 29(6): 565–570 [23] 曹琦. 超临界水煤直接氧化热力发电系统的构建及水煤氧化机理研究[D]. 北京: 华北电力大学(北京), 2019. CAO Qi. The build of power generating system and the mechanism of supercritical water oxidation of coal[D]. Beijing: North China Electric Power University, 2019. [24] SZIMA S, ARNAIZ DEL POZO C, CLOETE S, et al. Finding synergy between renewables and coal: flexible power and hydrogen production from advanced IGCC plants with integrated CO2 capture[J]. Energy Conversion and Management, 2021, 231: 113866. [25] 白尊亮. 中美日典型IGCC电站对比研究[J]. 中外能源, 2021, 26(5): 9–15 BAI Zunliang. Comparative study on typical IGCC power stations in China, USA and Japan[J]. Sino-Global Energy, 2021, 26(5): 9–15 [26] ZHAO Y J, DUAN Y Y, LIU Q, et al. Life cycle energy-economy-environmental evaluation of coal-based CLC power plant vs. IGCC, USC and oxy-combustion power plants with/without CO2 capture[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106121. [27] 岳光溪, 吕俊复, 徐鹏, 等. 循环流化床燃烧发展现状及前景分析[J]. 中国电力, 2016, 49(1): 1–13 YUE Guangxi, LU Junfu, XU Peng, et al. The up-to-date development and future of circulating fluidized bed combustion technology[J]. Electric Power, 2016, 49(1): 1–13 [28] MAJCHRZAK-KUC?BA I, WAWRZY?CZAK D, ZDEB J, et al. Treatment of flue gas in a CO2 capture pilot plant for a commercial CFB boiler[J]. Energies, 2021, 14(9): 2458. [29] YU A F, SU W, LIN X X, et al. Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53(3): 699–714. [30] 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1–10 XU Jinliang, LIU Chao, SUN Enhui, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1–10 [31] BERMEJO M D, COCERO M J, FERNáNDEZ-POLANCO F. A process for generating power from the oxidation of coal in supercritical water[J]. Fuel, 2004, 83(2): 195–204. [32] GUO L J, JIN H. Boiling coal in water: hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12953–12967. [33] YAN Q H, HOU Y W, LUO J R, et al. The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology[J]. Energy Conversion and Management, 2016, 129: 122–130. [34] TAPIA J F D, LEE J Y, OOI R E H, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems[J]. Sustainable Production and Consumption, 2018, 13: 1–15. [35] JIANG K, ASHWORTH P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: a bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110521. [36] TANG H, ZHANG S, CHEN W. Assessing representative CCUS layouts for China’s power sector toward carbon neutrality[J]. Environmental Science & Technology, 2021, 55(16): 11225–11235. [37] 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9): 2537–2544 MI Jianfeng, MA Xiaofang. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39(9): 2537–2544 [38] 赵志强, 张贺, 焦畅, 等. 全球CCUS技术和应用现状分析[J]. 现代化工, 2021, 41(4): 5–10 ZHAO Zhiqiang, ZHANG He, JIAO Chang, et al. Review on global CCUS technology and application[J]. Modern Chemical Industry, 2021, 41(4): 5–10 [39] 童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力, 2021, 49(5): 1–6 TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5): 1–6 [40] 魏文, 姜飞, 戴双凤, 等. 计及需求侧储能事故备用风险与火电机组深度调峰的经济优化研究[J]. 电力系统保护与控制, 2022, 50(10): 153–162 WEI Wen, JIANG Fei, DAI Shuangfeng, et al. Economic optimization of deep peak regulation of thermal power units taking into account the risk of emergency storage on the demand side[J]. Power System Protection and Control, 2022, 50(10): 153–162 [41] 张广才, 周科, 鲁芬, 等. 燃煤机组深度调峰技术探讨[J]. 热力发电, 2017, 46(9): 17–23 ZHANG Guangcai, ZHOU Ke, LU Fen, et al. Discussions on deep peaking technology of coal-fired power plants[J]. Thermal Power Generation, 2017, 46(9): 17–23 [42] 毛健雄. 燃煤耦合生物质发电[J]. 分布式能源, 2017, 2(5): 47–54 MAO Jianxiong. Co-firing biomass with coal for power generation[J]. Distributed Energy, 2017, 2(5): 47–54 [43] CHATTOPADHYAY D, BAZILIAN M D, HANDLER B, et al. Accelerating the coal transition[J]. The Electricity Journal, 2021, 34(2): 106906. [44] MILLS S. Combining solar power with coal-fired power plants, or cofiring natural gas[J]. Clean Energy, 2018, 2(1): 1–9. [45] CHITAKURE M, RUZIWA W, MUSADEMBA D. Optimization of hybridization configurations for concentrating solar power systems and coal-fired power plants: a review[J]. Renewable Energy Focus, 2020, 35: 41–55. [46] 王一坤, 邓磊, 王涛, 等. 大比例掺烧NH3对燃煤机组影响分析[J]. 洁净煤技术, 2022, 28(3): 185–192 WANG Yikun, DENG Lei, WANG Tao, et al. Influence of large scale coupled NH3 power generation on coal-fired units[J]. Clean Coal Technology, 2022, 28(3): 185–192 [47] 高正平, 涂安琪, 李天新, 等. 面向零碳电力的氨燃烧技术研究进展[J]. 洁净煤技术, 2022, 28(3): 173–184 GAO Zhengping, TU Anqi, LI Tianxin, et al. Recent advances on ammonia combustion technology for zero-carbon power[J]. Clean Coal Technology, 2022, 28(3): 173–184
|