中国电力 ›› 2024, Vol. 57 ›› Issue (8): 227-240.DOI: 10.11930/j.issn.1004-9649.202311046
• 综合能源系统优化调度 • 上一篇
收稿日期:
2023-11-10
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
杨海柱(1975—),男,博士,副教授,从事新能源发电预测、综合能源系统研究,E-mail:yanghaizhu@hpu.edu基金资助:
Haizhu YANG1(), Yanan BAI1(
), Peng ZHANG2, Zhongwen LI3(
)
Received:
2023-11-10
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
为降低燃气轮机的碳排放水平和提高灵活性,提出了计及富氧燃烧碳捕集技术和源荷双侧响应的综合能源系统低碳经济优化策略。首先,研究了富氧燃烧技术的运行原理及其能流特性,并构建空分制氧设备和碳捕集设备的耦合模型;其次,引入可调的热电比作为供给侧响应策略,需求侧对于电力、热能以及气负荷的特性进行综合权衡,借助能源价格的引导,并考虑其相互之间的可替代属性形成需求侧响应机制;最后,通过计及气负荷碳排放的阶梯式碳交易约束碳排放,以系统运行成本为目标优化各时段机组出力。设置多场景进行仿真分析,结果表明富氧燃烧碳捕集技术能够有效减少系统的碳排放量,源荷双侧响应能够灵活调节供给侧与需求侧的供能关系,并有效减少系统运行成本。
杨海柱, 白亚楠, 张鹏, 李忠文. 考虑富氧燃烧碳捕集技术和源荷双侧响应的综合能源系统优化调度[J]. 中国电力, 2024, 57(8): 227-240.
Haizhu YANG, Yanan BAI, Peng ZHANG, Zhongwen LI. Integrated Energy System Optimal Dispatch Considering Oxy-Fuel Combustion Carbon Capture Technology and Source-Load Bilateral Response[J]. Electric Power, 2024, 57(8): 227-240.
参数 | 数值 | 参数 | 数值 | |||
δ/((kW·h)·kg–1) | PCCS,om/(元·kW–1) | 0.05 | ||||
α | 0.90[ | POCC,om/(元·kW–1) | 0.032 | |||
β/((kW·h)·m–3) | 0.303 | PASO,om/(元·kW–1) | 0.05 | |||
POCC,max/kW | PP2G,om/(元·kW–1) | 0.035 | ||||
POCC,max/kW | 800 | HQ/(MJ·m–3) | 36 | |||
POS,max/m3 | 2000 | hcf/(元·(kW·h)–1) | 0.125 | |||
PP2G,max/kW | 500 | 0.3 | ||||
ω/(m3·kW–1) | 0.4 | 0.95 | ||||
0.441 | 200 | |||||
b1 | –0.38[ | a1 | 36[ | |||
ψ/(kg·(m3·h)–1) | 0.2 | c1 |
表 1 系统相关系数
Table 1 System correlation coefficients
参数 | 数值 | 参数 | 数值 | |||
δ/((kW·h)·kg–1) | PCCS,om/(元·kW–1) | 0.05 | ||||
α | 0.90[ | POCC,om/(元·kW–1) | 0.032 | |||
β/((kW·h)·m–3) | 0.303 | PASO,om/(元·kW–1) | 0.05 | |||
POCC,max/kW | PP2G,om/(元·kW–1) | 0.035 | ||||
POCC,max/kW | 800 | HQ/(MJ·m–3) | 36 | |||
POS,max/m3 | 2000 | hcf/(元·(kW·h)–1) | 0.125 | |||
PP2G,max/kW | 500 | 0.3 | ||||
ω/(m3·kW–1) | 0.4 | 0.95 | ||||
0.441 | 200 | |||||
b1 | –0.38[ | a1 | 36[ | |||
ψ/(kg·(m3·h)–1) | 0.2 | c1 |
设备 | 容量/kW | 自损系数 | 充能效率 | 放能效率 | ||||
蓄电池 | 500 | 0.020 | 0.96 | 0.96 | ||||
蓄热罐 | 600 | 0.025 | 0.95 | 0.95 | ||||
储氧罐 | 0.010 | 0.99 | 0.99 |
表 2 储能参数
Table 2 Energy storage parameters
设备 | 容量/kW | 自损系数 | 充能效率 | 放能效率 | ||||
蓄电池 | 500 | 0.020 | 0.96 | 0.96 | ||||
蓄热罐 | 600 | 0.025 | 0.95 | 0.95 | ||||
储氧罐 | 0.010 | 0.99 | 0.99 |
购电/(元·(kW·h)–1) | 售电/(元·(kW·h)–1) | 时段 | ||||
0.60 | 0.49 | 平时 | 07:00—10:00 14:00—16:00 | |||
1.10 | 0.76 | 峰时 | 11:00—13:00 17:00—22:00 | |||
0.30 | 0.29 | 谷时 | 23:00—07:00 |
表 3 分时交易电价
Table 3 Time-of-use electricity prices
购电/(元·(kW·h)–1) | 售电/(元·(kW·h)–1) | 时段 | ||||
0.60 | 0.49 | 平时 | 07:00—10:00 14:00—16:00 | |||
1.10 | 0.76 | 峰时 | 11:00—13:00 17:00—22:00 | |||
0.30 | 0.29 | 谷时 | 23:00—07:00 |
场景 | 成本/元 | 碳排放量/kg | ||||||||||||||||
运维 | 购电 | 弃风弃光 | 购气 | 碳交易 | 碳封存 | 总计 | 气负荷 | 总计 | ||||||||||
1 | 123.32 | |||||||||||||||||
2 | 0 | |||||||||||||||||
3 | 0 | |||||||||||||||||
4 | 0 |
表 4 各场景系统运行成本
Table 4 Operating costs of each scenario
场景 | 成本/元 | 碳排放量/kg | ||||||||||||||||
运维 | 购电 | 弃风弃光 | 购气 | 碳交易 | 碳封存 | 总计 | 气负荷 | 总计 | ||||||||||
1 | 123.32 | |||||||||||||||||
2 | 0 | |||||||||||||||||
3 | 0 | |||||||||||||||||
4 | 0 |
子场景 | 运行成本/元 | 用户用能满意度/% | ||
A | 100 | |||
B | 95.53 | |||
C | 98.62 |
表 5 不同需求响应下的用户用能满意度
Table 5 User satisfaction with different demand responses
子场景 | 运行成本/元 | 用户用能满意度/% | ||
A | 100 | |||
B | 95.53 | |||
C | 98.62 |
1 | 张高航, 李凤婷, 周强, 等. 考虑风电并网友好性的日前分层调度计划模型[J]. 电力系统保护与控制, 2019, 47 (6): 118- 124. |
ZHANG Gaohang, LI Fengting, ZHOU Qiang, et al. Day-ahead hierarchical dispatching model considering friendliness of wind power[J]. Power System Protection and Control, 2019, 47 (6): 118- 124. | |
2 | 周步祥, 朱文聪, 朱杰, 等. 风光制氢合成氨系统的多时段可调度域分析[J]. 中国电机工程学报, 2024, 44 (1): 160- 174. |
ZHOU Buxiang, ZHU Wencong, ZHU Jie, et al. Multi-stage dispatchable region analysis of wind and solar power-based hydrogen production and ammonia synthesis system[J]. Proceedings of the CSEE, 2024, 44 (1): 160- 174. | |
3 | 刘晓军, 聂凡杰, 杨冬锋, 等. 碳捕集电厂-电转气联合运行模式下考虑绿证-碳交易机制的综合能源系统低碳经济调度[J]. 电网技术, 2023, 47 (6): 2207- 2222. |
LIU Xiaojun, NIE Fanjie, YANG Dongfeng, et al. Low carbon economic dispatch of integrated energy systems considering green certificates-carbon trading mechanism under CCPP-P2G joint operation model[J]. Power System Technology, 2023, 47 (6): 2207- 2222. | |
4 | 张景淳, 陈胜, 彭琰, 等. 计及灵活爬坡的气-电耦合综合能源系统低碳经济调度研究[J]. 电网技术, 2022, 46 (9): 3315- 3325. |
ZHANG Jingchun, CHEN Sheng, PENG Yan, et al. Low carbon economic scheduling of gas-electric coupling integrated energy system considering flexible ramping products[J]. Power System Technology, 2022, 46 (9): 3315- 3325. | |
5 | 崔杨, 谷春池, 付小标, 等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报, 2022, 42 (23): 8431- 8446. |
CUI Yang, GU Chunchi, FU Xiaobiao, et al. Low-carbon economic dispatch of integrated energy system with carbon capture power plants considering generalized electric heating demand response[J]. Proceedings of the CSEE, 2022, 42 (23): 8431- 8446. | |
6 | 陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46 (6): 2042- 2054. |
CHEN Dengyong, LIU Fang, LIU Shuai. Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46 (6): 2042- 2054. | |
7 | 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42 (16): 5869- 5886, 6163. |
CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42 (16): 5869- 5886, 6163. | |
8 | 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39 (9): 2537- 2544. |
MI Jianfeng, MA Xiaofang. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39 (9): 2537- 2544. | |
9 | 李国庆, 王冲, 雷顺波, 等. 考虑碳捕集技术的电力系统双层优化配置[J]. 电力自动化设备, 2023, 43 (1): 25- 31. |
LI Guoqing, WANG Chong, LEI Shunbo, et al. Bi-level optimal allocation of power system considering carbon capture technology[J]. Electric Power Automation Equipment, 2023, 43 (1): 25- 31. | |
10 |
OBOIRIEN B O, NORTH B C, KLEYN T. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations[J]. Energy, 2014, 66, 550- 555.
DOI |
11 | 张文伟, 王维庆, 樊小朝, 等. 利用风电制氧的富氧燃煤电厂低碳能源系统容量优化配置[J]. 电力系统保护与控制, 2023, 51 (5): 70- 83. |
ZHANG Wenwei, WANG Weiqing, FAN Xiaochao, et al. Optimal capacity configuration of a low carbon energy system of oxygen-enriched coal-fired power plant using wind power to produce oxygen[J]. Power System Protection and Control, 2023, 51 (5): 70- 83. | |
12 |
CHEN C M, WU X G, MA J E, et al. Optimal low-carbon scheduling of integrated local energy system considering oxygen-enriched combustion plant and generalized energy storages[J]. IET Renewable Power Generation, 2022, 16 (4): 671- 687.
DOI |
13 | 张一, 李文杰, 吴魁, 等. 含多可控资源的低碳园区自动需求响应优化方法[J]. 广东电力, 2023, 36 (11): 11- 19. |
ZHANG Yi, LI Wenjie, WU Kui, et al. Automatic demand response optimization method for low-carbon parks with multi-controllable resources[J]. Guangdong Electric Power, 2023, 36 (11): 11- 19. | |
14 |
WANG Y L, MA Y Z, SONG F H, et al. Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response[J]. Energy, 2020, 205, 118022.
DOI |
15 | 张涛, 刘景, 杨晓雷, 等. 计及主/被动需求响应与条件风险价值的微网经济调度[J]. 高电压技术, 2021, 47 (9): 3292- 3304. |
ZHANG Tao, LIU Jing, YANG Xiaolei, et al. Economic dispatch of microgrid considering active/passive demand response and conditional value at risk[J]. High Voltage Engineering, 2021, 47 (9): 3292- 3304. | |
16 | 林俐, 蔡雪瑄. 基于风电消纳需求的综合能源服务商源荷协同运行策略[J]. 电网技术, 2019, 43 (7): 2517- 2527. |
LIN Li, CAI Xuexuan. Source-load cooperative operation strategy of integrated energy service provider based on wind power accommodation demand[J]. Power System Technology, 2019, 43 (7): 2517- 2527. | |
17 | CHEN J J, QI B, RONG Z, et al. Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement[J]. Energy, 2021, 217, 11938. |
18 | 杨海柱, 李梦龙, 江昭阳, 等. 考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J]. 电力系统保护与控制, 2020, 48 (10): 30- 37. |
YANG Haizhu, LI Menglong, JIANG Zhaoyang, et al. Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J]. Power System Protection and Control, 2020, 48 (10): 30- 37. | |
19 | 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44 (11): 4254- 4264. |
CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44 (11): 4254- 4264. | |
20 | 张定海, 毛宇, 谢勇, 等. 神府烟煤和云南劣质烟煤富氧分级燃烧特性试验研究[J]. 热力发电, 2023, 52 (7): 174- 180. |
ZHANG Dinghai, MAO Yu, XIE Yong, et al. Experimental study on oxyfuel staged combustion characteristics of Shenfu bituminous coal and Yunnan inferior bituminous coal[J]. Thermal Power Generation, 2023, 52 (7): 174- 180. | |
21 | 张智羽, 汪欣巍, 陈伟鹏, 等. 富氧燃烧系统余热利用优化及经济性研究[J]. 热力发电, 2019, 48 (10): 84- 91. |
ZHANG Zhiyu, WANG Xinwei, CHEN Weipeng, et al. Optimization and economic study on waste heat utilization for oxygen-enriched combustion system[J]. Thermal Power Generation, 2019, 48 (10): 84- 91. | |
22 | 周任军, 肖钧文, 唐夏菲, 等. 电转气消纳新能源与碳捕集电厂碳利用的协调优化[J]. 电力自动化设备, 2018, 38 (7): 61- 67. |
ZHOU Renjun, XIAO Junwen, TANG Xiafei, et al. Coordinated optimization of carbon utilization between power-to-gas renewable energy accommodation and carbon capture power plant[J]. Electric Power Automation Equipment, 2018, 38 (7): 61- 67. | |
23 | 施锦月, 许健, 曾博, 等. 基于热电比可调模式的区域综合能源系统双层优化运行[J]. 电网技术, 2016, 40 (10): 2959- 2966. |
SHI Jinyue, XU Jian, ZENG Bo, et al. A bi-level optimal operation for energy hub based on regulating heat-to-electric ratio mode[J]. Power System Technology, 2016, 40 (10): 2959- 2966. | |
24 | 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41 (9): 48- 55. |
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41 (9): 48- 55. | |
25 | 瞿凯平, 黄琳妮, 余涛, 等. 碳交易机制下多区域综合能源系统的分散调度[J]. 中国电机工程学报, 2018, 38 (3): 697- 707. |
QU Kaiping, HUANG Linni, YU Tao, et al. Decentralized dispatch of multi-area integrated energy systems with carbon trading[J]. Proceedings of the CSEE, 2018, 38 (3): 697- 707. | |
26 | 杨欢红, 谢明洋, 黄文焘, 等. 含废物处理的城市综合能源系统低碳经济运行策略[J]. 电网技术, 2021, 45 (9): 3545- 3552. |
YANG Huanhong, XIE Mingyang, HUANG Wentao, et al. Low-carbon economic operation of urban integrated energy system including waste treatment[J]. Power System Technology, 2021, 45 (9): 3545- 3552. | |
27 |
秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电—热—气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42 (14): 8- 13, 22.
DOI |
QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42 (14): 8- 13, 22.
DOI |
|
28 | 初壮, 赵蕾, 孙健浩, 等. 考虑热能动态平衡的含氢储能的综合能源系统热电优化[J]. 电力系统保护与控制, 2023, 51 (3): 1- 12. |
CHU Zhuang, ZHAO Lei, SUN Jianhao, et al. Thermoelectric optimization of an integrated energy system with hydrogen energy storage considering thermal energy dynamic balance[J]. Power System Protection and Control, 2023, 51 (3): 1- 12. | |
29 |
VU T T, LIM Y I, SONG D, et al. Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture[J]. Energy, 2020, 194, 116855.
DOI |
[1] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[2] | 李江南, 程韧俐, 周保荣, 刘稼瑾, 毛田, 赵文猛, 王滔, 黄光磊, 许银亮. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J]. 中国电力, 2024, 57(5): 149-156. |
[3] | 晁文浩, 袁至, 李骥. 计及电转气-风-火-核-碳捕集的多源联合系统优化调度[J]. 中国电力, 2024, 57(1): 183-194. |
[4] | 冯帅, 袁至, 李骥, 王维庆, 何山. 碳交易背景下基于综合协调储能系统的碳捕集电厂优化调度[J]. 中国电力, 2023, 56(6): 139-147. |
[5] | 杨宇玄, 高栋梁, 陈一鸣, 周步祥, 陈阳, 臧天磊. 考虑碳捕集和气网混氢的气电耦合系统低碳经济调度[J]. 中国电力, 2023, 56(10): 1-10. |
[6] | 董洁, 乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55(8): 202-212. |
[7] | 王彦哲, 周胜, 姚子麟, 欧训民. 中国煤电生命周期二氧化碳和大气污染物排放相互影响建模分析[J]. 中国电力, 2021, 54(8): 128-135. |
[8] | 周任军, 邓子昂, 徐健, 朱疆生, 王仰之. 碳捕集燃气热电机组碳循环及其虚拟电厂优化运行[J]. 中国电力, 2020, 53(9): 166-171. |
[9] | 王卫良, 王玉召, 吕俊复, 邵文君, 迟忠君, 张戟. 大型燃煤电站锅炉能效评价与节能分析[J]. 中国电力, 2020, 53(4): 177-185. |
[10] | 周任军, 武浩然, 冯剑, 王昱, 王仰之, 王珑. 考虑虚拟电厂经济运行的蓄热罐定容配置[J]. 中国电力, 2019, 52(11): 167-174. |
[11] | 史晓宏, 刘毅, 仲兆平, 张锴, 赵凯. 富氧燃烧气氛石灰石溶解特性研究[J]. 中国电力, 2018, 51(3): 155-162. |
[12] | 樊强, 许世森, 刘沅, 柳康, 陈雄, 罗丽珍, 董少龙, 陶继业, 陈智, 程健, 任永强. 基于IGCC的燃烧前CO2捕集技术应用与示范[J]. 中国电力, 2017, 50(5): 163-167. |
[13] | 赵瑞, 李延兵, 陈寅彪, 黄卫军, 余学海, 史晓宏, 陈创社. 富氧燃烧模拟烟气一体化压缩脱硫脱硝试验研究[J]. 中国电力, 2016, 49(9): 170-174. |
[14] | 韩涛,余学海,廖海燕,王艳君,黄科,廖彬. 200 MW富氧燃烧电站三塔空分流程模拟与优化[J]. 中国电力, 2016, 49(4): 134-140. |
[15] | 刘毅, 仲兆平, 赵凯, 史晓宏, 陈创社, 王文宝. 富氧燃烧模拟烟气石灰石-石膏湿法脱硫试验研究[J]. 中国电力, 2016, 49(11): 159-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||