[1] 黄勇理, 刘杰, 柳朝晖, 等. 富氧燃烧电站锅炉运行监控分析[J]. 中国电力, 2015, 48(6): 139-143. HUANG Yongli, LIU Jie, LIU Zhaohui, et al. Operational and monitoring analysis of oxy-fuel combustion power plants[J]. Electric Power, 2015, 48(6): 139-143.
[2] 廖海燕. 富氧燃烧锅炉传热特征分析及设计优化[J]. 中国电力, 2015, 48(2): 7-13. LIAO Haiyan. Heat transfer characteristics analysis and design optimization for oxy-fuel boilers[J]. Electric Power, 2015, 48(2): 7-13.
[3] 崔彩艳, 王春波, 白彦飞, 等. 微富氧燃烧技术下氨法脱碳试验研究[J]. 中国电力, 2014, 47(7): 156-160. CUI Caiyan, WANG Chunbo, BAI Yanfei, et al. Experimental study on carbon removal by aqueous ammonia under oxy-enrich combustion[J]. Electric Power, 2014, 47(7): 156-160.
[4] 阎维平, 鲁晓宇. 富氧燃烧锅炉烟气CO2捕集中回收NO的研究[J]. 动力工程学报, 2011, 31(4): 294-299 YAN Weiping, LU Xiaoyu. NO recovery during CO2 capture from flue gas of an oxygen-enriched coal-fired boiler[J]. Journal of Chinese Society of Power Engineer, 2011, 31(4): 294-299
[5] SOLOMON S, QIN D, MANNING M, et al. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[6] Annual energy review 2009. U. S. Energy information administration[R]. 2010.
[7] KRISTIN J, MARIE A, JINYING Y, et al. Oxyfuel combustion for coal-fired power generation with CO2 capture-opportunities and challenges[C]//Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. Vancouver, Canada, 2005: 201-209.
[8] 阎维平, 米翠丽. 300MW富氧燃烧电站锅炉恶经济性分析[J]. 动力工程学报, 2010, 30(3): 184-191. YAN Weiping, MI Cuili. Economic analysis of a 300MW utility boiler with oxygen-enriched combustion[J]. Journal of Chinese Society of Power Engineer, 2010, 30(3): 184-191.
[9] XU G, LIANG FF, YANG YP, et al. An improved CO2 separation and purification system based on cryogenic separation and distillation theory[J]. Energies, 2014(7): 3484-3502.
[10] SKOREK-OSIKOWSKA A, BARTELA L, KOTOWICZ J, A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units[J]. Energy Conversion & Management, 2015, 92(1): 421-430.
[11] KIGA T, TAKANO S, KIMURA N, et al. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion[J]. Energy Conversion & Management. 1997, 38(S): 129-134.
[12] 郝海玲, 张瑞生. 我国燃煤电厂脱硫技术应用现状及展望[J]. 电力环境保护, 2006, 22(3): 13-17 HAO Hailing, ZHANG Ruisheng. Present situation and prospect of flue gas desulfurization techniques for coal-fired power plants in China[J]. Electric Power Environmental Protection, 2006, 22(3): 13-17
[13] 钟秦, 刘爱民. 湿法烟气脱硫中石灰石溶解特性[J]. 南京理工大学学报(自然科学版), 2000, 24(6): 561-564,569. ZHONG Qin, LIU Aimin. Characterization of limestone dissolution for wet flue gas desulfurization[J]. Journal of Nanjing University of Science and Technology, 2000, 24(6): 561-564,569.
[14] 方立军. 喷淋式脱硫塔脱硫特性的试验研究[J]. 热能动力工程, 2011, 26(5): 604-608 FANG Lijun. Experiment research on the desulfurization characteristics of spray scrubber[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(5): 604-608
[15] 李增枝, 张国庆, 徐晓亮, 等. 湿法脱硫中石灰石溶解特性的试验研究[J]. 华北电力技术, 2012(2): 1-4. LI Zengzhi, ZHANG Guoqing, XU Xiaoliang, et al. Experimental study on limestone dissolution in wet desulphurization[J]. North China Electric Power, 2012(2): 1-4. |