中国电力 ›› 2024, Vol. 57 ›› Issue (9): 169-180.DOI: 10.11930/j.issn.1004-9649.202402011
贾东梨(), 杨晓雨(
), 刘科研(
), 叶学顺(
), 李昭(
)
收稿日期:
2024-02-03
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
贾东梨(1982—),女,硕士,高级工程师(教授级),从事配电网仿真与分析研究,E-mail:jiadongli@epri.sgcc.com.cn基金资助:
Dongli JIA(), Xiaoyu YANG(
), Keyan LIU(
), Xueshun YE(
), Zhao LI(
)
Received:
2024-02-03
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
如何实现可再生能源的最大化消纳同时保证配电网的安全经济运行成为亟须解决的问题。首先,将节点上的可再生能源出力和负荷聚合为净负荷并以区间描述其不确定性,同时将系统中调节能力在节点上的映射以端点可优化的区间描述,以调节能力区间和净负荷扰动区间的公共部分反映该节点净负荷扰动的可接纳域。然后,基于优先目标规划,构建了以最大化净负荷扰动可接纳域、最小化配电网运行总成本、最小化电压偏差为目标的考虑净负荷不确定性的3层优化模型,进而得到协同考虑新能源最大化消纳、运行成本合理、节点电压波动最小化的优化方案,保证了配电网运行的安全性、可靠性与经济性。最后,基于改进的IEEE 33节点配网算例,验证了该模型和方法的有效性。
贾东梨, 杨晓雨, 刘科研, 叶学顺, 李昭. 考虑净负荷不确定性的配电网协同调度[J]. 中国电力, 2024, 57(9): 169-180.
Dongli JIA, Xiaoyu YANG, Keyan LIU, Xueshun YE, Zhao LI. Distribution Network Coordinate Operation Considering Net Load Uncertainty[J]. Electric Power, 2024, 57(9): 169-180.
图 1 节点等效调节域、节点扰动域、节点净负荷扰动可接纳域的关系
Fig.1 Relationship between node equivalent regulation domain, net load disturbance interval and admissible region of the nodal net load
参数 | DG1 | DG2 | DG3 | DG4 | 上级电网 | |||||
初始出力 | 0 | 0 | 0 | 0 | 0 | |||||
有功出力上限/MW | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
有功出力下限/MW | 0 | 0 | 0 | 0 | 0 | |||||
上爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
下爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
运行成本系数a/(元·MW–2) | 0 | 0 | 0 | 0 | 0 | |||||
运行成本系数b/(元·MW–2) | 127 | 110 | 115 | 118 | 100 | |||||
运行成本系数c/元 | 37 | 25 | 27 | 31 | 0 |
表 1 可调机组和上级电网的具体参数
Table 1 The specific parameters of the unit and the superior power grid can be adjusted
参数 | DG1 | DG2 | DG3 | DG4 | 上级电网 | |||||
初始出力 | 0 | 0 | 0 | 0 | 0 | |||||
有功出力上限/MW | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
有功出力下限/MW | 0 | 0 | 0 | 0 | 0 | |||||
上爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
下爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
运行成本系数a/(元·MW–2) | 0 | 0 | 0 | 0 | 0 | |||||
运行成本系数b/(元·MW–2) | 127 | 110 | 115 | 118 | 100 | |||||
运行成本系数c/元 | 37 | 25 | 27 | 31 | 0 |
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层 | 21.271 | 241.868 | ||||||
第2层 | 21.271 | 222.170 | ||||||
第3层 | 21.271 | 222.170 |
表 2 优化后净负荷接纳域与成本
Table 2 Optimization results of this model under 20% perturbation
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层 | 21.271 | 241.868 | ||||||
第2层 | 21.271 | 222.170 | ||||||
第3层 | 21.271 | 222.170 |
系数(w1, w2, w3) | 电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | ||||
(0.33, 0.33, 0.33) | 6.2 | 31.906 | ||||||
(0.5, 0.2, 0.3) | 6.3 | 31.906 | ||||||
(0.3, 0.5, 0.2) | 6.7 | 31.730 | ||||||
(0.6, 0.2, 0.2) | 6.2 | 31.906 | ||||||
(0.2, 0.6, 0.2) | 6.4 | 31.730 | ||||||
(0.2, 0.2, 0.6) | 6.1 | 31.305 |
表 3 线性加权法不同权重因子优化结果
Table 3 Optimization results of different weight factors by linear weighting method
系数(w1, w2, w3) | 电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | ||||
(0.33, 0.33, 0.33) | 6.2 | 31.906 | ||||||
(0.5, 0.2, 0.3) | 6.3 | 31.906 | ||||||
(0.3, 0.5, 0.2) | 6.7 | 31.730 | ||||||
(0.6, 0.2, 0.2) | 6.2 | 31.906 | ||||||
(0.2, 0.6, 0.2) | 6.4 | 31.730 | ||||||
(0.2, 0.2, 0.6) | 6.1 | 31.305 |
电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | |||||
第1层 | 16.3 | 31.906 | ||||||
第2层(λ=1) | 17.6 | 31.906 | ||||||
第3层(λ=1, π=1) | 10.3 | 31.906 | ||||||
第2层(λ=0.5) | 19.3 | 15.953 | ||||||
第3层(λ=0.5, π=1) | 11.7 | 15.953 | ||||||
第3层(λ=1, π=1.2) | 6.1 | 31.906 |
表 4 优先目标规划法不同λ、π值的优化结果
Table 4 Optimization results of different λ and π values of priority objective programming method
电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | |||||
第1层 | 16.3 | 31.906 | ||||||
第2层(λ=1) | 17.6 | 31.906 | ||||||
第3层(λ=1, π=1) | 10.3 | 31.906 | ||||||
第2层(λ=0.5) | 19.3 | 15.953 | ||||||
第3层(λ=0.5, π=1) | 11.7 | 15.953 | ||||||
第3层(λ=1, π=1.2) | 6.1 | 31.906 |
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层结果 | 31.906 | 359.256 | ||||||
第2层结果 | 31.906 | 339.668 | ||||||
第3层结果 | 31.906 | 339.668 |
表 5 32%扰动下本文模型优化结果
Table 5 Optimization results of this model under 32% perturbation
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层结果 | 31.906 | 359.256 | ||||||
第2层结果 | 31.906 | 339.668 | ||||||
第3层结果 | 31.906 | 339.668 |
1 | 谢宇翔, 张雪敏, 罗金山, 等. 新能源大规模接入下的未来电力系统演化模型[J]. 中国电机工程学报, 2018, 38 (2): 421- 430, 673. |
XIE Yuxiang, ZHANG Xuemin, LUO Jinshan, et al. Evolution model for future power system under massive penetration of renewable energy[J]. Proceedings of the CSEE, 2018, 38 (2): 421- 430, 673. | |
2 |
SALEHI J, ABDOLAHI A. Optimal scheduling of active distribution networks with penetration of PHEV considering congestion and air pollution using DR program[J]. Sustainable Cities and Society, 2019, 51, 101709.
DOI |
3 | 高延涛. 含风电电力系统的多目标随机优化调度[J]. 通信电源技术, 2017, 34 (3): 22- 23, 26. |
GAO Yantao. Multi-objective stochastic optimal dispatch of power system with wind power[J]. Telecom Power Technology, 2017, 34 (3): 22- 23, 26. | |
4 | 张刘冬, 袁宇波, 孙大雁, 等. 基于两阶段鲁棒区间优化的风储联合运行调度模型[J]. 电力自动化设备, 2018, 38 (12): 59- 66, 93. |
ZHANG Liudong, YUAN Yubo, SUN Dayan, et al. Joint operation model of wind-storage system based on two-stage robust interval optimization[J]. Electric Power Automation Equipment, 2018, 38 (12): 59- 66, 93. | |
5 | 田宇, 黄婧, 谢枭, 等. 主动配电网无功补偿和OLTC鲁棒多目标优化配置[J]. 中国电力, 2023, 56 (3): 94- 99. |
TIAN Yu, HUANG Jing, XIE Xiao, et al. Multi-objective optimal allocation of reactive compensation and OLTC in active distribution network[J]. Electric Power, 2023, 56 (3): 94- 99. | |
6 | 黄瑶玲, 杨楠, 刘浔, 等. 分布式光伏电源接入对配电网影响[J]. 电工材料, 2022, (1): 78- 80. |
HUANG Yaoling, YANG Nan, LIU Xun, et al. Impact of distributed photovoltaic power access on distribution network[J]. Electrical Engineering Materials, 2022, (1): 78- 80. | |
7 | LIU R, ZHONG J C, QI Y L, et al. Research on evaluation and influencing factors of consumption capacity of distributed new energy[C]//2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Shanghai, China. IEEE, 2022: 811–816. |
8 | 李翠萍, 朱文超, 李军徽, 等. 分布式电源接入中压配电网的运行方案研究[J]. 东北电力大学学报, 2023, 43 (4): 57- 64. |
LI Cuiping, ZHU Wenchao, LI Junhui, et al. Research on the operation scheme of distributed generation access to medium voltage distribution network[J]. Journal of Northeast Electric Power University, 2023, 43 (4): 57- 64. | |
9 | SUN B, MA Y H, ZHENG G D, et al. Assessment of new energy consumption capability of receiver grid[C]//2022 4th International Conference on Power and Energy Technology (ICPET). Beijing, China. IEEE, 2022: 1143–1146. |
10 | 李增辉, 于钊, 孙大雁, 等. 新能源预测纳入备用对平衡和消纳的影响研究[J]. 电网技术, 2024, 48 (4): 1393- 1402. |
LI Zenghui, YU Zhao, SUN Dayan, et al. Research on influences to power balance & new energy consumption of taken-into-account proportion of new energy's predicted output in day-ahead power reserve[J]. Power System Technology, 2024, 48 (4): 1393- 1402. | |
11 | 李成龙, 田有文, 苗洁. 基于改进粒子群算法的新能源消纳最优化调度[J]. 农业科技与装备, 2023, (6): 63- 66. |
LI Chenglong, TIAN Youwen, MIAO Jie. Optimized scheduling of new energy consumption based on the improved particle swarm algorithm[J]. Agricultural Science & Technology and Equipment, 2023, (6): 63- 66. | |
12 | 黎立丰, 刘春晓, 朱浩骏, 等. 考虑网络安全约束的可再生能源消纳能力评估方法[J]. 电力科学与技术学报, 2023, 38 (4): 162- 168. |
LI Lifeng, LIU Chunxiao, ZHU Haojun, et al. Absorptive capability evaluation method of renewable energy considering security constraints of power grid[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 162- 168. | |
13 | 李建芳, 丛鹏伟, 孟晓丽, 等. 基于自适应粒子群算法的主动配电网日前有功调度[J]. 南方电网技术, 2015, 9 (11): 85- 91. |
LI Jianfang, CONG Pengwei, MENG Xiaoli, et al. Day-ahead active power scheduling of active distribution network based on adaptive particle swarm algorithm[J]. Southern Power System Technology, 2015, 9 (11): 85- 91. | |
14 | FENG K H, SONG C H, HUANG B B, et al. Research on the automatic control of grid peak regulation units to improve the new energy consumption level[C]//2022 12th International Conference on Power and Energy Systems (ICPES). Guangzhou, China. IEEE, 2022: 504–508. |
15 |
刘建伟, 李学斌, 刘晓鸥. 有源配电网中分布式电源接入与储能配置[J]. 发电技术, 2022, 43 (3): 476- 484.
DOI |
LIU Jianwei, LI Xuebin, LIU Xiaoou. Distributed power access and energy storage configuration in active distribution network[J]. Power Generation Technology, 2022, 43 (3): 476- 484.
DOI |
|
16 | 马喜平, 李亚昕, 梁琛, 等. 考虑高比例多元调节资源互动的配电网无功优化降损方法[J]. 中国电力, 2024, 57 (1): 123- 132. |
MA Xiping, LI Yaxin, LIANG Chen, et al. Reactive power optimization for loss reduction of distribution network considering interactions of high penetration level of multiple regulating energy resources[J]. Electric Power, 2024, 57 (1): 123- 132. | |
17 | XIONG C Y, LIU H M, YANG Z H, et al. Optimal reactive power dispatch of distribution network considering voltage security[C]//2022 IEEE Symposium Series on Computational Intelligence (SSCI). Singapore, Singapore. IEEE, 2022: 1362-1367. |
18 | 马喜平, 董晓阳, 李亚昕, 等. 考虑新能源接入的电网有功无功协调双层优化策略研究[J]. 电网与清洁能源, 2024, 40 (1): 137- 142, 149. |
MA Xiping, DONG Xiaoyang, LI Yaxin, et al. Research on the two-layer optimal strategy of active power and reactive power coordination considering integration of new energy[J]. Power System and Clean Energy, 2024, 40 (1): 137- 142, 149. | |
19 | 卢锦玲, 赵增辉, 胡兴华, 等. 计及光伏波动性的主动配电网双层有功无功协调优化[J/OL]. 电力系统及其自动化学报: 1–9 [2023-08-15].https://doi.org/10.19635/j.cnki.csu-epsa.001321. |
LU Jinling, ZHAO Zenghui, HU Xinghua, et al. Dual-layer Active and Reactive Power Coordination Optimization of Active Distribution Network Considering Photovoltaic Volatility[J/OL]. Proceedings of the CSU-EPSA: 1–9 [2023-08-15].https://doi.org/10.19635/j.cnki.csu-epsa.001321. | |
20 | 焦昊, 殷岩岩, 吴晨, 等. 基于安全强化学习的主动配电网有功-无功协调优化调度[J]. 中国电力, 2024, 57 (3): 43- 50. |
JIAO Hao, YIN Yanyan, WU Chen, et al. Coordinated optimization of active and reactive power of active distribution network based on safety reinforcement learning[J]. Electric Power, 2024, 57 (3): 43- 50. | |
21 | 米阳, 申杰, 卢长坤, 等. 考虑含储能的三端智能软开关与需求侧响应的主动配电网有功无功协调优化[J]. 电力系统保护与控制, 2024, 52 (3): 104- 118. |
MI Yang, SHEN Jie, LU Changkun, et al. Active and reactive power coordination optimization of an active distribution network considering a three-terminal soft open point with energy storage and demand response[J]. Power System Protection and Control, 2024, 52 (3): 104- 118. | |
22 | 王吉利, 薛飞, 黄玉雄, 等. 数据驱动的区域电网新能源消纳受阻因素智能辨识方法[J]. 智慧电力, 2022, 50 (10): 95- 101. |
WANG Jili, XUE Fei, HUANG Yuxiong, et al. Data-driven intelligent identification method of hindering factors for renewable energy consumption in regional power grids[J]. Smart Power, 2022, 50 (10): 95- 101. | |
23 | SHERALI H D, SOYSTER A L. Preemptive and nonpreemptive multi-objective programming: relationship and counterexamples[J]. Journal of Optimization Theory and Applications, 1983, 39 (2): 173- 186. |
24 | 刘帅, 王明强, 丁天池, 等. 考虑净负荷最佳可接纳域的主动配电网电源规划[J]. 电网技术, 2023, 47 (6): 2239- 2254. |
LIU Shuai, WANG Mingqiang, DING Tianchi, et al. Generation planning of active distribution network considering optimal admissible region of net load[J]. Power System Technology, 2023, 47 (6): 2239- 2254. | |
25 | 孙浩, 张磊, 许海林, 等. 微电网日内调度计划的混合整数规划模型[J]. 电力系统自动化, 2015, 39 (19): 21- 27. |
SUN Hao, ZHANG Lei, XU Hailin, et al. Mixed integer programming model for microgrid intra-day scheduling[J]. Automation of Electric Power Systems, 2015, 39 (19): 21- 27. | |
26 | YE H X. Surrogate affine approximation based co-optimization of transactive flexibility, uncertainty, and energy[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4084- 4096. |
27 | SOYSTER A L. Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming[J]. Operations Research, 1973, 21 (5): 1154- 1157. |
28 | BROOKE A, KENDRICK D, MEERAUS A. GAMS: a user's guide[M]. Washington D. C: GAMS Development Corporation, 1992. |
29 | 于丹文, 杨明, 翟鹤峰, 等. 鲁棒优化在电力系统调度决策中的应用研究综述[J]. 电力系统自动化, 2016, 40 (7): 134- 143, 148. |
YU Danwen, YANG Ming, ZHAI Hefeng, et al. An overview of robust optimization used for power system dispatch and decision-making[J]. Automation of Electric Power Systems, 2016, 40 (7): 134- 143, 148. |
[1] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[2] | 杨帆, 卫水平, 任意, 陈秭龙, 乐健. 变权-混合决策评估的复合功能并网逆变器多目标协同优化控制方法[J]. 中国电力, 2024, 57(3): 113-125. |
[3] | 周挺, 谭玉东, 孙晋, 文明, 廖菁, 李杨, 刘巩, 刘敦楠. 虚拟电厂参与能量与辅助服务市场的协同优化策略[J]. 中国电力, 2024, 57(1): 61-70. |
[4] | 陈泉, 宗炫君, 李梦源. 计及节能性的多异质能源系统多目标协同优化[J]. 中国电力, 2023, 56(6): 148-157. |
[5] | 胥洪远, 龙太聪, 赵启道, 李湃, 南璐, 张琪, 陈宇航, 谭晶. 考虑电转气消纳水电的水-电-气系统低碳鲁棒优化调度[J]. 中国电力, 2022, 55(11): 163-174. |
[6] | 金晨, 任大伟, 肖晋宇, 侯金鸣, 杜尔顺, 周原冰. 支撑碳中和目标的电力系统源-网-储灵活性资源优化规划[J]. 中国电力, 2021, 54(8): 164-174. |
[7] | 王仕俊, 平常, 薛国斌. 考虑共享储能的社区综合能源系统协同优化研究[J]. 中国电力, 2018, 51(8): 77-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||