中国电力 ›› 2024, Vol. 57 ›› Issue (9): 156-168.DOI: 10.11930/j.issn.1004-9649.202401110
张玉敏1(), 张涌琛1, 叶平峰3(
), 吉兴全1, 石春友1, 蔡富东2, 李一宸1
收稿日期:
2024-01-25
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
张玉敏(1986—),女,博士,副教授,从事电力系统运行与控制研究,E-mail:ymzhang2019@sdust.edu.cn基金资助:
Yumin ZHANG1(), Yongchen ZHANG1, Pingfeng YE3(
), Xingquan JI1, Chunyou SHI1, Fudong CAI2, Yichen LI1
Received:
2024-01-25
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对数据可靠性的要求。然后,通过构建增强核岭回归状态估计模型,建立了量测信息与估计残差之间的映射关系,输入量测信息后可以得到估计结果与估计残差。最后,在标准IEEE 33节点与某市78节点系统上进行数值仿真,结果证明了该方法在强非高斯噪声干扰下具有较高的精确性和鲁棒性。
张玉敏, 张涌琛, 叶平峰, 吉兴全, 石春友, 蔡富东, 李一宸. 基于集合经验模态分解的增强核岭回归配电系统状态估计[J]. 中国电力, 2024, 57(9): 156-168.
Yumin ZHANG, Yongchen ZHANG, Pingfeng YE, Xingquan JI, Chunyou SHI, Fudong CAI, Yichen LI. Enhanced Kernel Ridge Regression and Ensemble Empirical Mode Decomposition Based Distribution Network State Estimation[J]. Electric Power, 2024, 57(9): 156-168.
分量 | 拉普拉斯噪声 | 双峰高斯噪声 | ||||||
有功功率 | 无功功率 | 有功功率 | 无功功率 | |||||
IMF1 | ||||||||
IMF2 | ||||||||
IMF3 | ||||||||
IMF4 | ||||||||
IMF5 | ||||||||
IMF6 | ||||||||
IMF7 | ||||||||
IMF8 | ||||||||
IMF9 | ||||||||
IMF10 | ||||||||
IMF11 |
表 1 IMF分量样本熵结果
Table 1 IMF component sample entropy results
分量 | 拉普拉斯噪声 | 双峰高斯噪声 | ||||||
有功功率 | 无功功率 | 有功功率 | 无功功率 | |||||
IMF1 | ||||||||
IMF2 | ||||||||
IMF3 | ||||||||
IMF4 | ||||||||
IMF5 | ||||||||
IMF6 | ||||||||
IMF7 | ||||||||
IMF8 | ||||||||
IMF9 | ||||||||
IMF10 | ||||||||
IMF11 |
量测降噪情况 | 拉普拉斯噪声 | 双峰高斯噪声 | ||||||
AE | RMSE | AE | RMSE | |||||
有功降噪前 | 7.21×10–3 | 1.02×10–2 | 7.92×10–3 | 9.92×10–3 | ||||
EEMD降噪后 | 6.74×10–3 | 9.40×10–3 | 4.95×10–3 | 6.31×10–3 | ||||
无功降噪前 | 9.44×10–3 | 9.53×10–3 | 8.10×10–3 | 1.02×10–2 | ||||
EEMD降噪后 | 6.58×10–3 | 6.58×10–3 | 5.34×10–3 | 6.60×10–3 |
表 2 IEEE 33节点系统非高斯噪声下量测降噪效果
Table 2 Denoise effects of measurements under non-gaussian noise in the IEEE 33-node system
量测降噪情况 | 拉普拉斯噪声 | 双峰高斯噪声 | ||||||
AE | RMSE | AE | RMSE | |||||
有功降噪前 | 7.21×10–3 | 1.02×10–2 | 7.92×10–3 | 9.92×10–3 | ||||
EEMD降噪后 | 6.74×10–3 | 9.40×10–3 | 4.95×10–3 | 6.31×10–3 | ||||
无功降噪前 | 9.44×10–3 | 9.53×10–3 | 8.10×10–3 | 1.02×10–2 | ||||
EEMD降噪后 | 6.58×10–3 | 6.58×10–3 | 5.34×10–3 | 6.60×10–3 |
标准差 | 降噪前 | EEMD降噪后 | ||||||
AE | RMSE | AE | RMSE | |||||
0.02 | 2.91×10–2 | 4.14×10–2 | 2.56×10–2 | 3.34×10–2 | ||||
0.03 | 3.48×10–2 | 4.89×10–2 | 2.51×10–2 | 3.31×10–2 | ||||
0.04 | 3.62×10–2 | 5.13×10–2 | 2.90×10–2 | 3.78×10–2 | ||||
0.05 | 3.80×10–2 | 5.33×10–2 | 2.05×10–2 | 2.67×10–2 |
表 3 IEEE 33节点系统不同非高斯噪声下量测降噪效果
Table 3 Denoise effects of measurements under non-gaussian noise in the IEEE 33-node system
标准差 | 降噪前 | EEMD降噪后 | ||||||
AE | RMSE | AE | RMSE | |||||
0.02 | 2.91×10–2 | 4.14×10–2 | 2.56×10–2 | 3.34×10–2 | ||||
0.03 | 3.48×10–2 | 4.89×10–2 | 2.51×10–2 | 3.31×10–2 | ||||
0.04 | 3.62×10–2 | 5.13×10–2 | 2.90×10–2 | 3.78×10–2 | ||||
0.05 | 3.80×10–2 | 5.33×10–2 | 2.05×10–2 | 2.67×10–2 |
标准差 | 降噪前 | EEMD降噪后 | ||||||
MAPE | RMSE | MAPE | RMSE | |||||
0.01 | 1.02×10–4 | 9.59×10–5 | ||||||
0.02 | 2.91×10–4 | 2.09×10–4 | ||||||
0.03 | 2.78×10–4 | 0.01540 | 1.93×10–4 | |||||
0.04 | 3.88×10–4 | 2.53×10–4 | ||||||
0.05 | 4.87×10–4 | 3.28×10–4 |
表 4 IEEE 33节点系统不同非高斯噪声下降噪前后KRRSE滤波效果
Table 4 KRRSE performances of denoised measurements under different non-gaussian noise in the IEEE 33-node system
标准差 | 降噪前 | EEMD降噪后 | ||||||
MAPE | RMSE | MAPE | RMSE | |||||
0.01 | 1.02×10–4 | 9.59×10–5 | ||||||
0.02 | 2.91×10–4 | 2.09×10–4 | ||||||
0.03 | 2.78×10–4 | 0.01540 | 1.93×10–4 | |||||
0.04 | 3.88×10–4 | 2.53×10–4 | ||||||
0.05 | 4.87×10–4 | 3.28×10–4 |
标准差 | KRRSE[ | EKRRSE | ||||||
MAPE | RMSE | MAPE | RMSE | |||||
0.01 | 9.59×10–5 | 8.54×10–5 | ||||||
0.02 | 2.09×10–4 | 1.56×10–4 | ||||||
0.03 | 1.93×10–4 | 1.78×10–4 | ||||||
0.04 | 2.53×10–4 | 2.42×10–4 | ||||||
0.05 | 3.28×10–4 | 3.18×10–4 |
表 5 IEEE 33节点系统降噪后不同非高斯噪声下EKRRSE与KRRSE滤波效果对比
Table 5 EKRRSE & KRRSE performances via denoised measurements under different non-gaussian noise in the IEEE 33-node system
标准差 | KRRSE[ | EKRRSE | ||||||
MAPE | RMSE | MAPE | RMSE | |||||
0.01 | 9.59×10–5 | 8.54×10–5 | ||||||
0.02 | 2.09×10–4 | 1.56×10–4 | ||||||
0.03 | 1.93×10–4 | 1.78×10–4 | ||||||
0.04 | 2.53×10–4 | 2.42×10–4 | ||||||
0.05 | 3.28×10–4 | 3.18×10–4 |
情景 | 节点 | KRRSE[ | EKRRSE | |||||||
MAPE | RMSE | MAPE | RMSE | |||||||
1 | 12 | 4.13×10–4 | 4.00×10–4 | |||||||
32 | 7.26×10–4 | 6.37×10–4 | ||||||||
2 | 15 | 4.44×10–4 | 3.70×10–4 | |||||||
23 | 2.97×10–4 | 2.46×10–4 |
表 6 IEEE 33节点系统量测重建后KRRSE与EKRRSE滤波结果
Table 6 Filter results via KRRSE & EKRRSE after measurement reconstruction in the IEEE 33-node system
情景 | 节点 | KRRSE[ | EKRRSE | |||||||
MAPE | RMSE | MAPE | RMSE | |||||||
1 | 12 | 4.13×10–4 | 4.00×10–4 | |||||||
32 | 7.26×10–4 | 6.37×10–4 | ||||||||
2 | 15 | 4.44×10–4 | 3.70×10–4 | |||||||
23 | 2.97×10–4 | 2.46×10–4 |
算法 | 运行时间/s | 误差/10–4 | ||
CPF | 0.510 | 0.049 | ||
RCPF | 0.550 | 0.046 | ||
KRRSE | 0.039 | 0.051 | ||
EKRRSE | 0.082 | 0.044 |
表 7 KRRSE与EKRRSE时效性能比较
Table 7 Time performance comparison of KRRSE & EKRRSE
算法 | 运行时间/s | 误差/10–4 | ||
CPF | 0.510 | 0.049 | ||
RCPF | 0.550 | 0.046 | ||
KRRSE | 0.039 | 0.051 | ||
EKRRSE | 0.082 | 0.044 |
量测降噪情况 | 拉普拉斯噪声 | 双峰高斯噪声 | ||||||
AE | RMSE | AE | RMSE | |||||
有功降噪前 | 6.68×10–3 | 9.45×10–3 | 8.66×10–3 | 1.19×10–2 | ||||
EEMD降噪后 | 5.87×10–3 | 7.49×10–3 | 6.97×10–3 | 9.07×10–3 | ||||
无功降噪前 | 7.31×10–3 | 1.03×10–2 | 8.96×10–3 | 1.21×10–2 | ||||
EEMD降噪后 | 6.09×10–3 | 7.84×10–3 | 7.22×10–3 | 9.33×10–3 |
表 8 某市78节点系统非高斯噪声下量测降噪效果
Table 8 Denoise effects of measurements under non-Gaussian noise in the 78-code system of a certain city
量测降噪情况 | 拉普拉斯噪声 | 双峰高斯噪声 | ||||||
AE | RMSE | AE | RMSE | |||||
有功降噪前 | 6.68×10–3 | 9.45×10–3 | 8.66×10–3 | 1.19×10–2 | ||||
EEMD降噪后 | 5.87×10–3 | 7.49×10–3 | 6.97×10–3 | 9.07×10–3 | ||||
无功降噪前 | 7.31×10–3 | 1.03×10–2 | 8.96×10–3 | 1.21×10–2 | ||||
EEMD降噪后 | 6.09×10–3 | 7.84×10–3 | 7.22×10–3 | 9.33×10–3 |
标准差 | 降噪前 | EEMD降噪后 | ||||||
AE | RMSE | AE | RMSE | |||||
0.02 | 1.44×10–2 | 2.08×10–2 | 1.03×10–2 | 1.40×10–2 | ||||
0.03 | 2.11×10–2 | 2.97×10–2 | 1.49×10–2 | 1.97×10–2 | ||||
0.04 | 2.86×10–2 | 4.03×10–2 | 2.02×10–2 | 2.63×10–2 | ||||
0.05 | 3.59×10–2 | 5.13×10–2 | 2.56×10–2 | 3.35×10–2 |
表 9 某市78节点系统不同非高斯噪声下量测降噪效果
Table 9 Denoise effects of measurements under non-Gaussian noise in the 78-code system of a certain city
标准差 | 降噪前 | EEMD降噪后 | ||||||
AE | RMSE | AE | RMSE | |||||
0.02 | 1.44×10–2 | 2.08×10–2 | 1.03×10–2 | 1.40×10–2 | ||||
0.03 | 2.11×10–2 | 2.97×10–2 | 1.49×10–2 | 1.97×10–2 | ||||
0.04 | 2.86×10–2 | 4.03×10–2 | 2.02×10–2 | 2.63×10–2 | ||||
0.05 | 3.59×10–2 | 5.13×10–2 | 2.56×10–2 | 3.35×10–2 |
标准差 | KRRSE[ | EKRRSE | ||||||
MAPE | RMSE | MAPE | RMSE | |||||
0.01 | 9.28×10–4 | 5.91×10–4 | ||||||
0.02 | 1.29×10–3 | 1.04×10–3 | ||||||
0.03 | 1.68 ×10–3 | 1.38×10–3 | ||||||
0.04 | 2.25×10–3 | 2.19×10–3 | ||||||
0.05 | 2.87×10–3 | 2.41×10–4 |
表 10 某市78节点系统降噪后不同非高斯噪声下EKRRSE与KRRSE滤波效果对比
Table 10 EKRRSE&KRRSE performances via denoised measurements under different non-Gaussian noise in the 78-code system of a certain city
标准差 | KRRSE[ | EKRRSE | ||||||
MAPE | RMSE | MAPE | RMSE | |||||
0.01 | 9.28×10–4 | 5.91×10–4 | ||||||
0.02 | 1.29×10–3 | 1.04×10–3 | ||||||
0.03 | 1.68 ×10–3 | 1.38×10–3 | ||||||
0.04 | 2.25×10–3 | 2.19×10–3 | ||||||
0.05 | 2.87×10–3 | 2.41×10–4 |
情景 | 节点 | KRRSE[ | EKRRSE | |||||||
MAPE | RMSE | MAPE | RMSE | |||||||
1 | 11 | 6.87×10–4 | 6.56×10–4 | |||||||
61 | 5.02×10–4 | 3.12×10–4 | ||||||||
2 | 8 | 8.86×10–4 | 6.43×10–4 | |||||||
10 | 1.23×10–3 | 1.03×10–3 |
表 11 某市78节点系统量测重建后KRRSE与EKRRSE滤波结果
Table 11 Filter results via KRRSE & EKRRSE after measurement reconstruction in the 78-code system of a certain city
情景 | 节点 | KRRSE[ | EKRRSE | |||||||
MAPE | RMSE | MAPE | RMSE | |||||||
1 | 11 | 6.87×10–4 | 6.56×10–4 | |||||||
61 | 5.02×10–4 | 3.12×10–4 | ||||||||
2 | 8 | 8.86×10–4 | 6.43×10–4 | |||||||
10 | 1.23×10–3 | 1.03×10–3 |
算法 | 运行时间/s | 误差/10–4 | ||
KRRSE | 3.1×10–2 | 2.8 | ||
EKRRSE | 7.2×10–2 | 2.3 |
表 12 不同算法时效性能比较
Table 12 Time performance comparison of different algorithms
算法 | 运行时间/s | 误差/10–4 | ||
KRRSE | 3.1×10–2 | 2.8 | ||
EKRRSE | 7.2×10–2 | 2.3 |
1 | 费思源. 大数据技术在配电网中的应用综述[J]. 中国电机工程学报, 2018, 38 (1): 85- 96, 345. |
FEI Siyuan. Overview of application of big data technology in power distribution system[J]. Proceedings of the CSEE, 2018, 38 (1): 85- 96, 345. | |
2 | 赵化时, 李胜, 林子杰, 等. 电力系统低模型耦合智能状态估计[J]. 电力科学与技术学报, 2022, 37 (2): 116- 128. |
ZHAO Huashi, LI Sheng, LIN Zijie, et al. Smart power system state estimation with low model coupling[J]. Journal of Electric Power Science and Technology, 2022, 37 (2): 116- 128. | |
3 | 陈艳波, 高瑜珑, 赵俊博, 等. 综合能源系统状态估计研究综述[J]. 高电压技术, 2021, 47 (7): 2281- 2292. |
CHEN Yanbo, GAO Yulong, ZHAO Junbo, et al. Review on integrated energy system state estimation[J]. High Voltage Engineering, 2021, 47 (7): 2281- 2292. | |
4 | 王中行, 周元贵, 张学广. 基于人工智能算法的风电机组状态监测和故障诊断技术研究综述[J]. 东北电力大学学报, 2024, 44 (1): 42- 51. |
WANG Zhongxing, ZHOU Yuangui, ZHANG Xueguang. Review of artificial intelligence algorithms-based wind turbine condition monitoring and fault diagnosis techniques[J]. Journal of Northeast Electric Power University, 2024, 44 (1): 42- 51. | |
5 |
LI Z M, WU L, XU Y, et al. Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids[J]. Applied Energy, 2023, 331, 120282.
DOI |
6 | 林志超, 陈文其, 彭宏亮, 等. 基于故障网络状态估计的配电网故障定位方法[J]. 南方电网技术, 2022, 16 (11): 130- 138. |
LIN Zhichao, CHEN Wenqi, PENG Hongliang, et al. Fault location method based on fault-network state estimation for distribution network[J]. Southern Power System Technology, 2022, 16 (11): 130- 138. | |
7 | 林昱奂, 郝方舟, 李柏新, 等. 配电网运行异常数据识别方法[J]. 中国电力, 2023, 56 (9): 134- 139. |
LIN Yuhuan, HAO Fangzhou, LI Baixin, et al. Method for identifying abnormal data in distribution network operation[J]. Electric Power, 2023, 56 (9): 134- 139. | |
8 | YANG J, LIU G, ZHAO J, et al. A long short term memory based deep learning method for industrial load forecasting[J]. Electric Power Construction, 2018, 10 (39): 20- 27. |
9 |
李江, 王义伟, 魏超, 等. 卡尔曼滤波理论在电力系统中的应用综述[J]. 电力系统保护与控制, 2014, 42 (6): 135- 144.
DOI |
LI Jiang, WANG Yiwei, WEI Chao, et al. A survey on the application of Kalman filtering method in power system[J]. Power System Protection and Control, 2014, 42 (6): 135- 144.
DOI |
|
10 | 何耀, 周聪, 郑凌月, 等. 基于扩展卡尔曼滤波的虚假数据攻击检测方法[J]. 中国电力, 2017, 50 (10): 35- 40. |
HE Yao, ZHOU Cong, ZHENG Lingyue, et al. Detection method against false data injection attack based on extended Kalman filter[J]. Electric Power, 2017, 50 (10): 35- 40. | |
11 |
孙江山, 刘敏, 邓磊, 等. 基于自适应无迹卡尔曼滤波的配电网状态估计[J]. 电力系统保护与控制, 2018, 46 (11): 1- 7.
DOI |
SUN Jiangshan, LIU Min, DENG Lei, et al. State estimation of distribution network based on AUKF[J]. Power System Protection and Control, 2018, 46 (11): 1- 7.
DOI |
|
12 | 巫春玲, 郑克军, 徐先峰, 等. 基于自适应插值强跟踪扩展卡尔曼滤波的电力系统动态状态估计研究[J]. 电网技术, 2023, 47 (5): 2078- 2091. |
WU Chunling, ZHENG Kejun, XU Xianfeng, et al. Dynamic state estimation of power system based on adaptive interpolation strong tracking extended Kalman filter[J]. Power System Technology, 2023, 47 (5): 2078- 2091. | |
13 | 徐俊俊, 吴在军, 张腾飞, 等. 融入多源量测数据的配电网分布式区间状态估计[J]. 中国电机工程学报, 2022, 42 (24): 8888- 8900. |
XU Junjun, WU Zaijun, ZHANG Tengfei, et al. A distributed interval state estimation framework of distribution networks based on multi-source measurements[J]. Proceedings of the CSEE, 2022, 42 (24): 8888- 8900. | |
14 |
XU J J, WU Z J, ZHANG T F, et al. A secure forecasting-aided state estimation framework for power distribution systems against false data injection attacks[J]. Applied Energy, 2022, 328, 120107.
DOI |
15 | ZHAO H Q, TIAN B Y. Robust power system forecasting-aided state estimation with generalized maximum mixture correntropy unscented Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 10. |
16 |
马文涛, 寇晓, 郭耀松, 等. 基于扩展KRSL无迹卡尔曼滤波的约束动态状态估计[J]. 电力系统自动化, 2023, 47 (6): 185- 196.
DOI |
MA Wentao, KOU Xiao, GUO Yaosong, et al. Constrained dynamic state estimation based on extended kernel risk sensitive loss unscented Kalman filter[J]. Automation of Electric Power Systems, 2023, 47 (6): 185- 196.
DOI |
|
17 | 田钧祥, 陈铁, 陈彬. 基于改进自适应UKF算法的中压配电网鲁棒动态状态估计方法[J]. 中国电力, 2023, 56 (11): 128- 133. |
TIAN Junxiang, CHEN Tie, CHEN Bin. Robust dynamic state estimation method for medium voltage distribution networks based on improved adaptive UKF algorithm[J]. Electric Power, 2023, 56 (11): 128- 133. | |
18 |
赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44 (1): 1- 17.
DOI |
ZHAO Jiahui, TIAN Liting, CHENG Lin. Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J]. Power Generation Technology, 2023, 44 (1): 1- 17.
DOI |
|
19 | 黄蔓云, 卫志农, 孙国强, 等. 数据挖掘在配电网态势感知中的应用: 模型、算法和挑战[J]. 中国电机工程学报, 2022, 42 (18): 6588- 6599. |
HUANG Manyun, WEI Zhinong, SUN Guoqiang, et al. Review of distribution system situation awareness based on data mining: modeling, algorithms and challenges[J]. Proceedings of the CSEE, 2022, 42 (18): 6588- 6599. | |
20 |
ZHANG Z H, ZHANG Z J, ZHAO S, et al. Robust adaptive Unscented Kalman Filter with gross error detection and identification for power system forecasting-aided state estimation[J]. Journal of the Franklin Institute, 2023, 360 (13): 10297- 10336.
DOI |
21 | 夏添梁, 张玉敏, 杨明, 等. 联合长短期记忆神经网络和粒子滤波的配电网预测辅助鲁棒状态估计方法[J]. 高电压技术, 2022, 48 (4): 1343- 1355. |
XIA Tianliang, ZHANG Yumin, YANG Ming, et al. Robust forecasting-aided state estimation method of distribution network based on long-short term memory neural network and particle filter[J]. High Voltage Engineering, 2022, 48 (4): 1343- 1355. | |
22 | JI X Q, YIN Z Y, ZHANG Y M, et al. Real-time robust forecasting-aided state estimation of power system based on data-driven models[J]. International Journal of Electrical Power & Energy Systems, 2021, 125, 106412. |
23 |
DEHGHANPOUR K, WANG Z Y, WANG J H, et al. A survey on state estimation techniques and challenges in smart distribution systems[J]. IEEE Transactions on Smart Grid, 2019, 10 (2): 2312- 2322.
DOI |
24 | 孙国强, 钱嫱, 陈亮, 等. 基于深度信念网络伪量测建模的配电网状态估计[J]. 电力自动化设备, 2018, 38 (12): 94- 99. |
SUN Guoqiang, QIAN Qiang, CHEN Liang, et al. State estimation of distribution system based on pesudo measurement modeling using deep belief network[J]. Electric Power Automation Equipment, 2018, 38 (12): 94- 99. | |
25 |
WU Z, ZHAN H Y, GU W, et al. Interval state estimation of distribution network with power flow constraint[J]. IEEE Access, 2018, 6, 40826- 40835.
DOI |
26 |
程浩忠, 袁青山, 汪一华, 等. 基于等效电流量测变换的电力系统状态估计方法[J]. 电力系统自动化, 2000, 24 (14): 25- 29.
DOI |
CHENG Haozhong, YUAN Qingshan, WANG Yihua, et al. A state estimation method of power systems based on equivalent current measurement transformation[J]. Automation of Electric Power Systems, 2000, 24 (14): 25- 29.
DOI |
|
27 |
卫志农, 汪方中, 何桦, 等. 一种新的快速解耦配电网状态估计方法[J]. 电力系统及其自动化学报, 2002, 14 (4): 6- 9.
DOI |
WEI Zhinong, WANG Fangzhong, HE Hua, et al. A new fast decoupled state estimation method for distribution systems[J]. Proceedings of the CSU-EPSA, 2002, 14 (4): 6- 9.
DOI |
|
28 | 陈源奕, 王玉彬, 杨强. 基于时空特征图卷积网络的配电网实时状态估计方法[J]. 高电压技术, 2021, 47 (7): 2386- 2395. |
CHEN Yuanyi, WANG Yubin, YANG Qiang. Real-time state estimation method for distribution networks based on spatial-temporal feature graph convolution network[J]. High Voltage Engineering, 2021, 47 (7): 2386- 2395. | |
29 | 刘晓莉, 曾祥晖, 黄翊阳, 等. 联合粒子滤波和卷积神经网络的电力系统状态估计方法[J]. 电网技术, 2020, 44 (9): 3361- 3367. |
LIU Xiaoli, ZENG Xianghui, HUANG Yiyang, et al. State estimation based on particle filtering and convolutional neural networks for power systems[J]. Power System Technology, 2020, 44 (9): 3361- 3367. | |
30 |
SHI J, CHEN Y B, CHENG X G, et al. Four-stage space-time hybrid model for distributed photovoltaic power forecasting[J]. IEEE Transactions on Industry Applications, 2023, 59 (1): 1129- 1138.
DOI |
31 | YU Y X, HAN X S, YANG M, et al. Probabilistic prediction of regional wind power based on spatiotemporal quantile regression[C]//2019 IEEE Industry Applications Society Annual Meeting. Baltimore, MD, USA. IEEE, 2019: 1–16. |
32 |
LIU J Z, SINGH R, PAL B C. Distribution system state estimation with high penetration of demand response enabled loads[J]. IEEE Transactions on Power Systems, 2021, 36 (4): 3093- 3104.
DOI |
33 | 王泽, 张玉敏, 吉兴全, 等. 基于深度学习与内核岭回归的电力系统鲁棒状态估计[J]. 高电压技术, 2022, 48 (4): 1332- 1342. |
WANG Ze, ZHANG Yumin, JI Xingquan, et al. Robust state estimation of power system based on deep learning and kernel ridge regression[J]. High Voltage Engineering, 2022, 48 (4): 1332- 1342. | |
34 | SHI Q, LIU M, HANG L Q. A novel distribution system state estimator based on robust cubature particle filter used for non-Gaussian noise and bad data scenarios[J]. IET Generation, Transmission & Distribution. 2022, 16(7): 1385–1399. |
[1] | 贺全鹏, 刘苇, 杨维永, 魏兴慎, 王琦. 针对负荷重分配攻击的移动目标防御策略[J]. 中国电力, 2024, 57(9): 44-52. |
[2] | 王安宁, 范荣奇, 张旸, 刘嘉超, 胡薇, 钟世民, 贾科. 基于多特征量判据的新型配电系统早期故障检测[J]. 中国电力, 2024, 57(9): 181-193. |
[3] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王焕昌, 张帅, 赵凤展. 计及运行灵活性的中压配电系统源-网-储协同扩展规划[J]. 中国电力, 2024, 57(7): 98-108. |
[4] | 朱沐雨, 马宏忠, 郭鹏宇, 宣文婧. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57(6): 18-26. |
[5] | 杨国华, 祁鑫, 贾睿, 刘一峰, 蒙飞, 马鑫, 邢潇文. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57(2): 55-61. |
[6] | 赵化时, 黄耀辉, 宋智强, 许建中, 郑可欣, 梁康康. 含LCC/MMC交直流混联系统的状态估计及不良数据检测[J]. 中国电力, 2024, 57(11): 62-69. |
[7] | 马光, 朱文, 顾慧杰, 赵化时, 何锡祺, 陈世杰. 基于加权最小绝对值状态估计的有源配电网拓扑辨识方法[J]. 中国电力, 2024, 57(1): 167-174. |
[8] | 张媛, 夏向阳, 岳家辉, 刘代飞, 王明琦. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56(7): 207-215,227. |
[9] | 郭梦芳, 杜翔, 王飞. 考虑边界等式约束的电-气-热综合能源系统鲁棒状态估计方法[J]. 中国电力, 2023, 56(6): 101-106. |
[10] | 王金丽, 李丰胜, 解芳, 张姚, 田野. “双碳”战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56(5): 22-31. |
[11] | 袁兆祥, 肖智宏, 王晶, 于燕玲, 黄炎, 高星乐. 考虑多时刻和压缩候选集合的配电网最小化采集优化方法[J]. 中国电力, 2023, 56(12): 20-30. |
[12] | 田钧祥, 陈铁, 陈彬. 基于改进自适应UKF算法的中压配电网鲁棒动态状态估计方法[J]. 中国电力, 2023, 56(11): 128-133. |
[13] | 曾垂辉, 李文正, 李宝伟, 谢俊. 含多分布式能源聚合商的本地电力市场最优能源交易策略[J]. 中国电力, 2023, 56(11): 236-245. |
[14] | 刘文军, 欧名勇, 夏向阳, 李湘华, 岳家辉. 基于欧姆内阻压降的电池簇不一致性在线监测方法研究[J]. 中国电力, 2022, 55(8): 87-95. |
[15] | 马思棋, 王忠. 基于贝叶斯优化弹性网络回归的谐波状态估计方法[J]. 中国电力, 2022, 55(8): 104-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||