[1] 严伟, 陈俊, 沈全荣. 大型隐极发电机进相运行的探讨[J]. 电力系统自动化, 2007, 31(2):94-97 YAN Wei, CHEN Jun, SHEN Quanrong. Discussion on large non-salient pole generator phase-advancement operation[J]. Automation of Electric Power Systems, 2007, 31(2):94-97 [2] 王成亮, 王宏华. 大型同步发电机进相运行动模试验设计[J]. 电测与仪表, 2016, 53(2):118-124 WANG Chengliang, WANG Honghua. Design of dynamic simulation test for leading phase of large synchronous generator[J]. Electrical Measurement & Instrumentation, 2016, 53(2):118-124 [3] 王成亮, 王宏华. 同步发电机进相研究综述[J]. 电力自动化设备, 2012, 32(11):131-135 WANG Chengliang, WANG Honghua. Review of synchronous generator leading-phase operation[J]. Electric Power Automation Equipment, 2012, 32(11):131-135 [4] 蒲倩, 张毅威, 陈磊, 等. 容性孤网发电机进相运行与紧急电压控制[J]. 电力系统保护与控制, 2012, 40(18):24-29 PU Qian, ZHANG Yiwei, CHEN Lei, et al. Generator's leading phase operation and emergency voltage control of capacitive isolated network[J]. Power System Protection and Control, 2012, 40(18):24-29 [5] 韦延方, 卫志农, 张友强, 等. 发电机进相运行的研究现状及展望[J]. 电力系统保护与控制, 2012, 40(9):146-154 WEI Yanfang, WEI Zhinong, ZHANG Youqiang, et al. Progress and development trend on leading phase of generator[J]. Power System Protection and Control, 2012, 40(9):146-154 [6] 史家燕, 史源素, 赵肖敏, 等. 发电机工况参数模型及进相运行在线监测[J]. 中国电机工程学报, 2006, 26(11):139-143 SHI Jiayan, SHI Yuansu, ZHAO Xiaomin, et al. The new method of determining the capability of leading phase of generator and realizing the on-line monitoring[J]. Proceedings of the CSEE, 2006, 26(11):139-143 [7] 董新胜, 宁晓棠, 石海珍. 新疆主电网发电机进相试验与数据分析[J]. 华东电力, 2007, 35(4):67-70 DONG Xinsheng, NING Xiaotang, SHI Haizhen. Generator phase advance tests and data analysis for Xinjiang main grids[J]. East China Electric Power, 2007, 35(4):67-70 [8] 王成亮, 王宏华, 徐钢. 基于反向传播神经网络的发电机进相能力建模研究[J]. 电网技术, 2011, 35(11):136-140 WANG Chengliang, WANG Honghua, XU Gang. Modeling of generator leading phase ability based on back propagation neural network[J]. Power System Technology, 2011, 35(11):136-140 [9] 曹侃, 王涛, 忻俊慧. 同步发电机进相能力的快速估算方法[J]. 中国电力, 2014, 47(1):108-111 CAO Kan, WANG Tao, XIN Junhui. A fast estimation method of synchronous generator leading phase ability[J]. Electric Power, 2014, 47(1):108-111 [10] 陈波, 周宁, 舒展. 进相试验约束条件下隐极同步发电机进相深度限值分析[J]. 电机与控制应用, 2016, 43(2):30-35 CHEN Bo, ZHOU Ning, SHU Zhan. Research on leading power factor depth limit of non-salient synchronous generator with constraint in leading power factor test[J]. Electric Machines & Control Application, 2016, 43(2):30-35 [11] 刘翔宇, 何玉灵, 周文, 等. 考虑电网稳定限制的机组进相能力分析[J]. 华北电力大学学报(自然科学版), 2017, 44(1):52-57 LIU Xiangyu, HE Yuling, ZHOU Wen, et al. Analysis on unit capability of leading-phase operation considering stability restriction of power grid[J]. Journal of North China Electric Power University (Natural Science Edition), 2017, 44(1):52-57 [12] 王成亮, 王宏华, 向昌明, 等. 发电机进相能力的RBF神经网络模型[J]. 电工技术学报, 2012, 27(1):124-129 WANG Chengliang, WANG Honghua, XIANG Changming, et al. Generator leading phase ability model based on RBF neural network[J]. Transactions of China Electrotechnical Society, 2012, 27(1):124-129 [13] 翟学锋, 卫志农, 范立新, 等. 基于相关向量机的发电机进相能力建模[J]. 电力自动化设备, 2015, 35(3):146-151 ZHAI Xuefeng, WEI Zhinong, FAN Lixin, et al. Generator leading phase capability model based on relevance vector machine[J]. Electric Power Automation Equipment, 2015, 35(3):146-151 [14] 李明昌, 戴明新, 周斌, 等. 基于数据驱动模型的入海污染源排污削减优化方法研究[J]. 水资源与水工程学报, 2017, 24(2):9-18 LI Mingchang, DAI Mingxin, ZHOU Bin, et al. Study on the optimization method of pollutant emission reduction from the sea based on data-driven model[J]. Journal of Water Resources and Water Engineering, 2017, 24(2):9-18 [15] 刘俐, 李勇, 曹一家, 等. 基于支持向量机和长短期记忆网络的暂态功角稳定预测方法[J]. 电力系统自动化设备, 2020, 40(2):129-135 LIU Li, LI Yong, CAO Yijia, et al. Transient rotor angle stability prediction method based on SVM and LSTM network[J]. Electric Power Automation Equipment, 2020, 40(2):129-135 [16] 吕干云, 蒋小伟, 郝思鹏, 等. 基于半监督支持向量机的电压暂降源定位[J]. 电力系统保护与控制, 2019, 47(18):76-81 LÜ Ganyun, JIANG Xiaowei, HAO Sipeng, et al. Location of voltage sag source based on semi-supervised SVM[J]. Power System Protection and Control, 2019, 47(18):76-81 [17] 马小敏, 高剑, 吴驰, 等. 基于灰色支持向量机的输电线路覆冰厚度预测模型[J]. 中国电力, 2016(11):46-50 MA Xiaomin, GAO Jian, WU Chi, et al. Prediction model of ice thickness of transmission line based on grey support vector machine[J]. China Electric Power, 2016(11):46-50 [18] HOU K, SHAO G, WANG H, et al. Research on practical power system stability analysis algorithm based on modified SVM[J]. Protection and Control of Modern Power Systems, 2018, 3(11):1-7. [19] 郭艳飞, 程林, 李洪涛, 等. 基于支持向量机和互联网信息修正的空间负荷预测方法[J]. 中国电力, 2019, 52(4):80-88 GUO Yanfei, CHENG Lin, LI Hongtao, et al. Spatial load forecasting method based on support vector machineand internet information correction[J]. Electric Power, 2019, 52(4):80-88 [20] 李永馨, 王鸿, 王致杰, 等. 基于ISMC-PSO的风电爬坡输出功率预测系统的研究[J]. 电力系统保护与控制, 2019, 47(18):115-119 LI Yongxin, WANG Hong, WANG Zhijie, et al. Research on ISMC-PSO based wind uphill power output prediction system[J]. Power System Protection and Control, 2019, 47(18):115-119 [21] 刘俊磊, 钱峰, 伍双喜, 等. 基于支持向量回归的直流受端电网动态无功需求在线评估[J]. 电力系统保护与控制, 2019, 47(13):37-45 LIU Junlei, QIAN Feng, WU Shuangxi, et al. Online assessment of dynamic reactive power demand of DC receiving power grid based on support vector regression[J]. Power System Protection and Control, 2019, 47(13):37-45 [22] 中国电力企业联合会. 同步发电机进相试验导则:DL/T 1523-2016[S]. 北京:中国电力出版社, 2016. China Federation of electric power enterprises. Guidelines for phase in test of synchronous generator:DL/T1523-2016[S]. Beijing:China Electric Power Press, 2016. [23] 张少明, 盛四清. 基于改进粒子群算法的微网优化运行[J]. 中国电力, 2020, 53(1):1-8 ZHANG Shaoming, SHENG Siqing. Optimal operation of microgrid based on improved particle swarm optimization algorithm[J]. Electric Power, 2020, 53(1):1-8 [24] CAMPOS M, KROHLING R A, ENRIQUEZ I. Bare bones particle swarm optimization with scale matrix adaptation[J]. IEEE Transactions on Cybernetics, 2014, 44(9):1567-1578. [25] 蒋丽, 叶润舟, 梁昌勇, 等. 改进的二阶振荡粒子群算法[J]. 计算机工程与应用, 2019, 55(9):130-138 JIANG Li, YE Runzhou, LIANG Changyong, et al. Improved second-order oscillatory particle swarm optimization algorithm[J]. Computer Engineering and Application, 2019, 55(9):130-138
|