中国电力 ›› 2019, Vol. 52 ›› Issue (4): 8-17,110.DOI: 10.11930/j.issn.1004-9649.201903121

• 可再生能源与新一代电力系统专栏 • 上一篇    下一篇

电力电子化电力系统的调频挑战与多层级协调控制框架

鲁宗相1, 叶一达1, 郭莉2,3, 谢珍建2,3, 刘国静2,3, 乔颖1   

  1. 1. 清华大学 电机工程与应用电子技术系, 北京 100084;
    2. 国网江苏电力设计咨询有限公司, 江苏 南京 210008;
    3. 国网江苏省电力公司经济技术研究院, 江苏 南京 210008
  • 收稿日期:2019-03-29 出版日期:2019-04-05 发布日期:2019-04-16
  • 作者简介:鲁宗相(1974-),男,副教授,博士生导师,IET Fellow,从事风电/太阳能发电并网分析与控制、能源与电力宏观规划、电力系统可靠性、分布式电源及微电网等方面的研究和教学工作,E-mail:luzongxiang98@tsinghua.edu.cn;叶一达(1992-),男,博士研究生,从事新能源发电并网研究,E-mail:yeahelec@126.com;乔颖(1982-),女,博士,副教授,从事新能源规划与消纳研究,E-mail:qiaoying@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(U1766201);国网江苏电力咨询有限公司科技项目(储能建模及安全稳定研究)。

Frequency Regulation Challenge of Power Electronics Dominated Power Systems and Its New Multi-level Coordinated Control Framework

LU Zongxiang1, YE Yida1, GUO Li2,3, XIE Zhenjian2,3, LIU Guojing2,3, QIAO Ying1   

  1. 1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
    2. State Grid Jiangsu Electric Power Design Company, Nanjing 210008, China;
    3. Economy and Technology Institute, State Grid Jiangsu Electric Power Co., Nanjing 210008, China
  • Received:2019-03-29 Online:2019-04-05 Published:2019-04-16
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.U1766201), Science and Technology Project of State Grid Jiangsu Electric Power Design Company (Study on Storage Modeling and Security in Jiangsu Power Grid).

摘要: 电力电子接口装备在源、网、荷的深度应用推进了电力系统的电力电子化进程。净负荷波动增加、同步惯性减小、有功平衡能力削弱,对系统频率稳定的冲击初现端倪。电力电子接口电源的输出功率不响应系统频率变化、输入能量不可控、控制器高度异构,难以纳入传统交流同步系统的有功频率调整框架,而未来的电力系统需要在越来越少同步发电机容量背景下维持有功平衡,问题更加凸显。从电压源型换流器可定制性出发,提出了电力电子化下对电力系统有功频率多层级协调控制的新框架:在接口层面,重建输出功率与系统频率的耦合关系,虚拟同步机的惯性响应与一次调频特性;在单机层面,协调电力电子电源内部储能元件释能和输入能量来提供调频能量,优化虚拟参数实现机网协调,降低频率二次跌落风险;在多机层面,统筹改善频率动态特性的装置和长期频率恢复装置的配合;在系统层面,借助柔性直流输电换流站的下垂策略,重建直流互联的多同步系统间跨区频率支援。

关键词: 电力电子化, 可定制性, 调频, 虚拟同步, 有功平衡

Abstract: The widely-used converters in the source, grid, and demand sides have advanced the electronics domination process of power systems. With the increasing of net load, and the decreasing of synchronous inertia and power balance capability, the risk of frequency stability has emerged. One the one hand, future power system must keep power balance with less synchronous generation capacity; on the other hand, due to absence of output responding to system frequency, and input uncontrollability, and also due to the heterogeneous controllers, converters could hardly be adapted for frequency regulation framework of the traditional synchronous system. Based on designing the voltage resource converter (VSG), the paper proposes a novel multi-level coordinated control framework of power electronics dominated power systems. In the converter level, the coupling relationship of output power and system frequency is rebuilt by simulating the inertial response and primary frequency control. In the equipment level, virtual parameters are grid-friendly optimized to coordinate the energy from internal storage and from input in order to reduce the risk of secondary frequency drip. In the multiple-converters level, devices are cooperated that improves the frequency dynamics and that provide frequency restoration. In the system level, the inter-area frequency regulation is supported again across DC-line-isolated synchronous systems on the basis of droop control of VSC-HVDC stations.

Key words: power electronics domination, designability, frequency regulation, virtual synchronous, power balance

中图分类号: