[1] |
赵争鸣, 袁立强, 鲁挺, 等. 我国大容量电力电子技术与应用发展综述[J]. 电气工程学报, 2015, 10(4):26-34 ZHAO Zhengming, YUAN Liqiang, LU Ting, et al. Overview of the developments on high power electronic technologies and applications in China[J]. Journal of Electrical Engineering, 2015, 10(4):26-34
|
[2] |
REN21. Renewables 2018 global status report[R]. 2018.
|
[3] |
中华人民共和国国家发展和改革委员会能源研究所. 2050高比例可再生能源发展情景暨途径研究[R]. 北京:中华人民共和国国家发展和改革委员会能源研究所, 2015.
|
[4] |
CHAKRABORTY A. Advancements in power electronics and drives in interface with growing renewable energy resources[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4):1816-1827.
|
[5] |
BLAABJERG F, MA K. Future on power electronics for wind turbine systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(3):139-152.
|
[6] |
IGLESIAS R L, ARANTEGUI R L, ALONSO M A. Power electronics evolution in wind turbines-A market-based analysis[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4982-4993.
|
[7] |
PIERRI E, BINDER O, HEMDAN N G A, et al. Challenges and opportunities for a European HVDC grid[J]. Renewable and Sustainable Energy Reviews, 2017, 70:427-456.
|
[8] |
李明节. 大规模特高压交直流混联电网特性分析与运行控制[J]. 电网技术, 2016, 40(4):985-991 LI Mingjie. Characteristic Analysis and Operational Control of large-scale hybrid UHV AC/DC Power grids[J]. Power System Technology, 2016, 40(4):985-991
|
[9] |
中国电力企业联合会. 中国电力行业年度发展报告2018[M]. 北京:中国市场出版社, 2018.
|
[10] |
陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1):20-27 CHEN Guoping, LI Mingjie, XU Tao, et al. Study on Technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1):20-27
|
[11] |
GONZALEZ-LONGATT F. Frequency control and inertial response schemes for the future power networks[C]//Large Scale Renewable Power Generation. Springer, Singapore, 2014:193-231.
|
[12] |
李兆伟, 吴雪莲, 庄侃沁, 等. "9·19"锦苏直流双极闭锁事故华东电网频率特性分析及思考[J]. 电力系统自动化, 2017, 41(7):149-155 LI Zhaowei, WU Xuelian, ZHUANG Kanxin, et al. Analysis and reflection on frequency characteristics of east China grid after bipolar locking of "9·19" Jinping-Sunan DC transmission line[J]. Automation of Electric Power Systems, 2017, 41(7):149-155
|
[13] |
付俊波, 黄伟, 何俊峰. 云南电网异步联网后的运行频率分析[J]. 云南电力技术, 2016(1):14-17 FU Junbo, HUANG Wei, HE Junfeng. Analysis on operation frequency and solutions in Yunnan asynchronous Interconnection[J]. Yunnan Electric Power, 2016(1):14-17
|
[14] |
陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10):3095-3103 CHEN Guoping, LI Mingjie, XU Tao, et al. Practice and challenge of renewable energy development based on interconnected power grids[J]. Power System Technology, 2017, 41(10):3095-3103
|
[15] |
TIELENS P, VAN HERTEM D. The relevance of inertia in power systems[J]. Renewable and Sustainable Energy Reviews, 2016, 55:999-1009.
|
[16] |
LEE J, MULJADI E, SRENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1):279-288.
|
[17] |
WANG Y, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems-Assessment of wind inertial and primary frequency responses[J]. IEEE Transactions on Power Systems, 2013, 28(3):2412-2420.
|
[18] |
TAN Y, MEEGAHAPOLA L, MUTTAQI K M. A suboptimal power-point-tracking-based primary frequency response strategy for DFIGs in hybrid remote area power supply systems[J]. IEEE Transactions on Energy Conversion, 2016, 31(1):93-105.
|
[19] |
GEVORGIAN V, ZHANG Y, ELA E. Investigating the impacts of wind generation participation in interconnection frequency response[J]. IEEE transactions on Sustainable Energy, 2015, 6(3):1004-1012.
|
[20] |
MARGARIS I D, PAPATHANASSIOU S A, HATZIARGYRIOU N D, et al. Frequency control in autonomous power systems with high wind power penetration[J]. IEEE Transactions on Sustainable Energy, 2012, 3(2):189-199.
|
[21] |
LI Y, XU Z, ØSTERGAARD J, et al. Coordinated control strategies for offshore wind farm integration via VSC-HVDC for system frequency support[J]. IEEE Transactions on Energy Conversion, 2017, 32(3):843-856.
|
[22] |
ANDERSON P M, FOUAD A A. Power system control and stability (second edition)[M]. IEEE Series on Power Engineering, 2003.
|
[23] |
KROPOSKI B, JOHNSON B, ZHANG Y, et al. Achieving a 100% renewable grid:Operating electric power systems with extremely high levels of variable renewable energy[J]. IEEE Power and Energy Magazine, 2017, 15(2):61-73.
|
[24] |
ZHONG Q C, NGUYEN P L, MA Z, et al. Self-synchronized synchronverters:Inverters without a dedicated synchronization unit[J]. IEEE Transactions on Power Electronics, 2014, 29(2):617-630.
|
[25] |
徐政. 柔性直流输电系统[M]. 2版. 北京:机械工业出版社, 2016.
|
[26] |
BEVRANI H, ISE T, MIURA Y. Virtual synchronous generators:A survey and new perspectives[J]. International Journal of Electrical Power & Energy Systems, 2014, 54:244-254.
|
[27] |
GUAN M, PAN W, ZHANG J, et al. Synchronous generator emulation control strategy for voltage source converter (VSC) stations[J]. IEEE Transactions on Power Systems, 2015, 30(6):3093-3101.
|
[28] |
LIU J, MIURA Y, ISE T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Power Electronics, 2016, 31(5):3600-3611.
|
[29] |
VINAYAGAM A, SWARNA K S V, KHOO S Y, et al. PV based microgrid with grid-support grid-forming inverter control-(simulation and analysis)[J]. Smart grid and renewable energy, 2017, 8(1):1-30.
|
[30] |
OCHOA D, MARTINEZ S. Fast-frequency response provided by DFIG-wind turbines and its impact on the grid[J]. IEEE Transactions on Power Systems, 2017, 32(5):4002-4011.
|
[31] |
ZERTEK A, VERBIC G, PANTOS M. A novel strategy for variable-speed wind turbines' participation in primary frequency control[J]. IEEE Transactions on sustainable energy, 2012, 3(4):791-799.
|
[32] |
PARK J Y, LEE J K, OH K Y, et al. Design of simulator for 3MW wind turbine and its condition monitoring system[C]//Proceedings of the International Multi Conference of Engineers and Computer Scientists, IMECS. 2010:930-933.
|
[33] |
TANG C, PATHMANATHAN M, SOONG W L, et al. Effects of inertia on dynamic performance of wind turbines[C]//2008 Australasian Universities Power Engineering Conference. IEEE, 2008:1-6.
|
[34] |
RAWN B, LEHN P. Wind rotor inertia and variable efficiency:fundamental limits on their exploitation for inertial response and power system damping[C]//European Wind Energy Conference 2008. 2008.
|
[35] |
BOUKHEZZAR B, SIGUERDIDJANE H. Nonlinear control of a variable-speed wind turbine using a two-mass model[J]. IEEE Transactions on Energy Conversion, 2011, 26(1):149-162.
|
[36] |
VIDYANANDAN K V, SENROY N. Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transactions on Power Systems, 2013, 28(2):837-846.
|
[37] |
WU Ziping, GAO Wenzhong, GAO Tianqi, et al. State-of-the-art review on frequency response of wind power plants in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(1):1-16.
|
[38] |
LIU K, QU Y, KIM H M, et al. Avoiding frequency second dip in power unreserved control during wind power rotational speed recovery[J]. IEEE Transactions on Power Systems, 2018, 33(3):3097-3106.
|
[39] |
鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述[J]. 中国电力, 2018, 51(1):51-58 LU Zongxiang, TANG Haiyan, QIAO Ying, et al. The impact of power electronics interfaces on power system frequency control:A review[J]. Electric Power, 2018, 51(1):51-58
|