中国电力 ›› 2025, Vol. 58 ›› Issue (5): 1-10.DOI: 10.11930/j.issn.1004-9649.202407002

• 面向新型配电系统的人工智能与新能源技术 • 上一篇    下一篇

基于不完全量测数据的配电网状态估计方法

李鹏1(), 祖文静1, 刘一欣2(), 田春筝1, 郝元钊3, 李慧璇1   

  1. 1. 国网河南省电力公司经济技术研究院,河南 郑州 450052
    2. 天津大学 电气自动化与信息工程学院,天津 300072
    3. 国网河南省电力公司,河南 郑州 450000
  • 收稿日期:2024-07-01 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    李鹏(1985),男,高级经济师,从事农村能源转型、主配微网协同研究,E-mail:hdlp0830@163.com
    刘一欣(1989),男,通信作者,副教授,从事配电网/微电网运行优化、电力市场研究,E-mail:liuyixin@tju.edu.cn
  • 基金资助:
    国网河南省电力公司科技项目(5217L0240015)。

State Estimation Method for Distribution Network Based on Incomplete Measurement Data

LI Peng1(), ZU Wenjing1, LIU Yixin2(), TIAN Chunzheng1, HAO Yuanzhao3, LI Huixuan1   

  1. 1. State Grid Henan Electric Power Company Economic and Technological Research Institute, Zhengzhou 450052, China
    2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    3. State Grid Henan Electric Power Company, Zhengzhou 450000, China
  • Received:2024-07-01 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by the Science and Technology Project of State Grid Henan Electric Power Company (No.5217L0240015).

摘要:

随着分布式能源的大规模接入,传统配电网的运行特性发生显著变化,导致负荷分散、实时可观性差和数据不完整等问题,严重影响了配电网的状态监测和运行优化。对此,提出了一种基于不完全实时量测数据的贝叶斯优化卷积神经网络(convolutional neural networks,CNN)与长短期记忆网络(long short-term memory,LSTM)结合的配电网状态估计方法。该方法分为离线学习和在线状态估计2个阶段。离线学习部分,利用生成对抗网络生成所需样本,以训练CNN-LSTM模型,并采用贝叶斯优化算法调整超参数,从而提升算法的准确性。在线状态估计部分,基于不完全的配电网实时数据和训练完成的CNN-LSTM模型进行在线状态估计。最后,算例基于IEEE 33和IEEE 123网络进行仿真分析,验证了所提状态估计方法的有效性和准确性。

关键词: 配电网, 状态估计, 不完全量测, 卷积神经网络, 长短期记忆网络, 贝叶斯优化

Abstract:

With the large-scale integration of distributed energy resources, the operational characteristics of the traditional distribution networks have undergone significant changes, leading to such problems as dispersed loads, poor real-time observability, and incomplete data, which severely impact the state monitoring and operational optimization of the distribution networks. To address above problems, we propose a distribution network state estimation method based on Bayesian-optimized convolutional neural networks (CNN) and long short-term memory (LSTM) networks with incomplete real-time measurement data. The method is divided into two phases: offline learning and online state estimation. In the offline learning phase, generative adversarial networks are used to generate the required samples for training the CNN-LSTM model, and the Bayesian optimization algorithm is employed to adjust the hyperparameters, thereby enhancing the accuracy of the algorithm. In the online state estimation phase, the state estimation is performed online with incomplete real-time data of the distribution network and the trained CNN-LSTM model. Finally, simulation analysis is conducted on the IEEE 33 and IEEE 123 networks, which confirms the effectiveness and accuracy of the proposed state estimation method.

Key words: distribution network, state estimation, incomplete measurement, convolutional neural networks, long short-term memory, Bayesian optimization