中国电力 ›› 2025, Vol. 58 ›› Issue (5): 11-20, 32.DOI: 10.11930/j.issn.1004-9649.202408092

• 面向新型配电系统的人工智能与新能源技术 • 上一篇    下一篇

基于多智能体深度策略梯度的离网型微电网双层优化调度

樊会丛1(), 段志国2, 陈志永1, 朱士加1, 刘航3, 李文霄1(), 杨阳3   

  1. 1. 国网河北省电力有限公司经济技术研究院,河北 石家庄 050000
    2. 国网河北省电力有限公司,河北 石家庄 050000
    3. 国网河北省电力有限公司邯郸供电分公司,河北 邯郸 056000
  • 收稿日期:2024-08-26 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    樊会丛(1979),女,高级工程师,从事电网二次及通信规划研究,E-mail:jyy_fanhc@163.com
    李文霄(1995),女,通信作者,工程师,从事电网二次及通信规划研究,E-mail:1259146404@qq.com
  • 基金资助:
    国家电网有限公司科技项目(5400-202313823A-4-1-KJ)。

Two-layer Optimization Scheduling for Off-grid Microgrids Based on Multi-agent Deep Policy Gradient

FAN Huicong1(), DUAN Zhiguo2, CHEN Zhiyong1, ZHU Shijia1, LIU Hang3, LI Wenxiao1(), YANG Yang3   

  1. 1. Economic and Technological Research Institute, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050000, China
    2. State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050000, China
    3. Handan Electric Power Supply Company, State Grid Hebei Electric Power Co., Ltd., Handan 056000, China
  • Received:2024-08-26 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by the Science And Technology Project of SGCC (No.5400-202313823A-4-1-KJ).

摘要:

针对高渗透率分布式可再生能源并网引发的电压越限、双向潮流等问题,提出一种双层有功无功协同优化方法,实现离网型微电网有功无功协调优化调度,保证系统安全稳定运行并提升运行的经济性。下层模型基于混合整数二阶锥规划优化慢速调节离散设备,上层模型基于多智能体深度策略梯度算法优化快速调节连续设备。双层模型同时调节微电网的有功和无功潮流,能够实时观测微电网状态,在线决策调节设备的优化方案,且不依赖精确的潮流模型和复杂的通信系统。最后,在改进IEEE 33节点微电网系统中验证双层优化模型的可行性和有效性。

关键词: 离网型微电网, 多智能体, 深度强化学习, 混合整数线性规划, 多时间尺度, 有功无功协同优化

Abstract:

To address the voltage limit violations and bidirectional power flow problems arising from high-penetration integration of distributed renewable energy, this paper proposes a two-layer active-reactive power cooperative optimization method to achieve cooperative optimal dispatch of active and reactive power in off-grid microgrids, ensuring the secure and stable operation of the system while enhancing operational economy. The lower-level model optimizes slow-regulating discrete devices based on mixed-integer second-order cone programming, while the upper-level model optimizes fast-regulating continuous devices using a multi-agent deep policy gradient algorithm. The two-layer model coordinates both active and reactive power flows of the microgrid, enabling real-time monitoring of the microgrid's status and online decision-making for the optimization of device regulation, without reliance on precise power flow models or complex communication systems. Finally, the feasibility and effectiveness of the two-layer optimization model are validated in the improved IEEE 33-bus microgrid system.

Key words: off-grid microgrid, multi-agent, deep reinforcement learning, mixed integer linear programming, multi-time scale, active-reactive power cooperative optimization