中国电力 ›› 2024, Vol. 57 ›› Issue (11): 161-172.DOI: 10.11930/j.issn.1004-9649.202309119

• 技术经济 • 上一篇    下一篇

基于多智能体深度确定策略梯度算法的火力发电商竞价策略

张兴平1(), 王腾1(), 张馨月1(), 张浩楠2()   

  1. 1. 华北电力大学 经济与管理学院,北京 102206
    2. 华北电力大学(保定) 经济与管理系,河北 保定 071003
  • 收稿日期:2023-09-25 接受日期:2024-02-20 出版日期:2024-11-28 发布日期:2024-11-27
  • 作者简介:张兴平(1972—),男,通信作者,博士,教授,从事电力市场研究,E-mail:zxp@ncepu.edu.cn
    王腾(1998—),男,硕士研究生,从事电力市场、智能报价研究,E-mail:471692144@qq.com
    张馨月(1996—),女,博士研究生,从事碳市场、绿证市场研究,E-mail:15895965970@163.com
    张浩楠(1992—),男,博士,讲师,从事电力转型与电力市场研究,E-mail: zhanghn2022@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(促进我国发电侧高效清洁发展的多市场耦合优化与机制研究,72074075);国家社会科学基金重大项目(“双碳”目标下能源结构转型路径与协同机制研究,22ZD104)。

Bidding Strategy for Thermal Power Generation Companies Based on Multi-agent Deep Deterministic Policy Gradient Algorithm

Xingping ZHANG1(), Teng WANG1(), Xinyue ZHANG1(), Haonan ZHANG2()   

  1. 1. School of Economics and Management, North China Electric Power University, Beijing 102206, China
    2. Department of Economic Management, North China Electric Power University, Baoding 071003, China
  • Received:2023-09-25 Accepted:2024-02-20 Online:2024-11-28 Published:2024-11-27
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (Research on Multi-market Coupling Optimization and Mechanism for High-efficiency and Clean Development of Power Generation in China, No.72074075) and Major Program of the National Social Science Foundation of China ("Double Carbon" Target and Pathways for Energy Structure Transformation and Synergistic Mechanisms, No.22ZD104).

摘要:

火电是新型电力系统的重要支撑,研究火力发电商的竞价策略以及不同出清机制的影响,对保障其低碳高效运营具有重要意义。构建基于多智能体深度确定策略梯度算法的竞价策略模型,分析不同火力发电商组合的竞价差异化策略,优化多主体报价报量策略,探究边际统一出清、按报价支付出清和随机匹配出清3种典型出清机制的市场影响。结果表明,该策略模型可引导火力发电商采取合理的竞价方式以提高市场效率;在新能源渗透率较低时,不同出清机制对各类型机组的影响有所不同;随着新能源渗透率的提高,采用按报价支付出清机制可以兼顾经济和环境效益;当新能源渗透率达到较高水平时,采用随机匹配出清机制可有效应对市场波动风险。

关键词: 火力发电商, 多智能体, 出清机制, 竞价策略, 新能源渗透率

Abstract:

Thermal power is an important support for the new power system. It is of great significance to study the bidding strategy for thermal power generation companies and the influence of different clearing mechanisms to ensure their low-carbon and efficient operation. A bidding strategy model is constructed based on the multi-agent deep deterministic policy gradient algorithm to analyze the differential bidding strategies for different combinations of thermal power generation companies. The multi-agent price and quantity bidding strategy is optimized, and the market impact of different market clearing mechanisms is explored. The simulation results indicate that the proposed bidding strategy model can guide the thermal power generation companies to optimize their bidding methods and improve the market efficiency. When the penetration rate of new energy is low, the applicability of different clearing mechanisms varies for various types of units; with the increase of the penetration rate of new energy, the pay as bid mechanism can be used to enhance the economic and environmental efficiency of the electricity market; when the penetration rate of new energy reaches a high level, the random matching clearing mechanism can effectively address market volatility risks.

Key words: thermal power generation companies, multi-agent, clearing mechanism, bidding strategy, new energy penetration