中国电力 ›› 2025, Vol. 58 ›› Issue (4): 193-204.DOI: 10.11930/j.issn.1004-9649.202411030
李可昀1,2(), 张宁1(
), 赵乐3, 赵成3, 李嘉宇1,2, 唐诚1,2
收稿日期:
2024-11-11
录用日期:
2025-02-09
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
LI Keyun1,2(), ZHANG Ning1(
), ZHAO Le3, ZHAO Cheng3, LI Jiayu1,2, TANG Cheng1,2
Received:
2024-11-11
Accepted:
2025-02-09
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
在“双碳”战略目标下,核算输变电工程的碳排放水平可为电力工程的减碳工作提供重要数据参考。当前,输变电工程碳排放核算领域面临着标准缺失与研究基础薄弱的问题,亟待建立精细化方法和模型。面向输变电工程供应链上游减碳的应用场景,首先,从研究对象和核算边界两方面界定了碳排放核算范围;其次,梳理了关键设备与材料在原材料获取与生产制造环节的碳排放活动,研究了工程前期数据受限情况下的活动量获取与转换方式,构建了输变电工程关键设备与材料的碳排放核算模型;最后,面向某特高压直流输变电工程,基于在初设阶段的有限数据源,核算了7种关键电力设备与材料在原材料获取与生产制造环节的碳排放。结果表明,导线、杆塔材料和变压器是输变电工程关键设备与材料的主要碳排放来源,应聚焦这3类设备在原材料与制造工艺方面的碳排放,推进电力设备与材料的降碳研究。
李可昀, 张宁, 赵乐, 赵成, 李嘉宇, 唐诚. 输变电工程关键电力设备与材料碳排放核算方法[J]. 中国电力, 2025, 58(4): 193-204.
LI Keyun, ZHANG Ning, ZHAO Le, ZHAO Cheng, LI Jiayu, TANG Cheng. Carbon Emission Accounting Methods for Key Electric Equipment and Materials in Power Transmission and Transformation Projects[J]. Electric Power, 2025, 58(4): 193-204.
类型 | 项目 | 排放因子 | 数据获取年份 | 地域代表性 | 适用性 | |||||
金属 材料 | 铝/(tCO2·t–1) | 20.3 | 2019 | 中国 | 原铝,用于制造导线、电缆等 | |||||
钢*/(tCO2·t–1) | 2.35 | 2021—2022 | 中国 | 厚钢板,用于制造在设备、桥梁等领域的耐候钢、容器钢等 | ||||||
铜*/(tCO2·t–1) | 26.96 | 2019 | 中国 | 阴极铜,用于制造导线、电缆、电气设备等 | ||||||
非金属 材料 | 玻璃/(tCO2·t–1) | 1.4 | 2021 | 英国 | 用于制造玻璃绝缘子 | |||||
瓷/(tCO2·t–1) | 1.2 | 2022 | 中国 | 用于制造瓷绝缘子 | ||||||
聚酯树脂/(tCO2·t–1) | 74.3 | 2019 | 中国 | 用于制造变压器绝缘材料 | ||||||
中间 产品 | 型钢/(tCO2·t–1) | 2.24 | 2022 | 中国安徽 | 重型H型钢,用于机械、建筑等领域 | |||||
冷轧钢板及钢带/(tCO2·t–1) | 2.6 | 2022 | 中国北京 | 用于制造变压器 | ||||||
热轧钢板及钢带/(tCO2·t–1) | 2.3 | 2023 | 中国河北 | 碳素结构钢,用于制造钢结构、机械等 | ||||||
8寸晶圆/(kgCO2·片–1) | 322.1 | 2022 | 中国台湾 | 硅晶圆,用于制造晶闸管 | ||||||
加工 工艺 | 热浸镀锌工艺/(tCO2·t–1) | 1.46 | 2022 | 中国安徽 | 用于对钢材进行热镀锌防腐处理 | |||||
导线加工工艺/(tCO2·km–1) | 0.15 | 2020 | 中国 | 用于生产钢芯铝绞线、铝包钢绞线等导线 | ||||||
能源 | 电力/(tCO2·(MW·h)–1) | 0.536 6 | 2022 | 中国 | 全国电力平均二氧化碳因子 | |||||
石油/(tCO2·t–1) | 2.5 | 2015 | 中国黑龙江 | 用于制造变压器油 |
表 1 某特高压直流输电工程关键材料与能源碳排放因子
Table 1 Carbon emission factors of key materials and energy in an ultra-high voltage direct current transmission project
类型 | 项目 | 排放因子 | 数据获取年份 | 地域代表性 | 适用性 | |||||
金属 材料 | 铝/(tCO2·t–1) | 20.3 | 2019 | 中国 | 原铝,用于制造导线、电缆等 | |||||
钢*/(tCO2·t–1) | 2.35 | 2021—2022 | 中国 | 厚钢板,用于制造在设备、桥梁等领域的耐候钢、容器钢等 | ||||||
铜*/(tCO2·t–1) | 26.96 | 2019 | 中国 | 阴极铜,用于制造导线、电缆、电气设备等 | ||||||
非金属 材料 | 玻璃/(tCO2·t–1) | 1.4 | 2021 | 英国 | 用于制造玻璃绝缘子 | |||||
瓷/(tCO2·t–1) | 1.2 | 2022 | 中国 | 用于制造瓷绝缘子 | ||||||
聚酯树脂/(tCO2·t–1) | 74.3 | 2019 | 中国 | 用于制造变压器绝缘材料 | ||||||
中间 产品 | 型钢/(tCO2·t–1) | 2.24 | 2022 | 中国安徽 | 重型H型钢,用于机械、建筑等领域 | |||||
冷轧钢板及钢带/(tCO2·t–1) | 2.6 | 2022 | 中国北京 | 用于制造变压器 | ||||||
热轧钢板及钢带/(tCO2·t–1) | 2.3 | 2023 | 中国河北 | 碳素结构钢,用于制造钢结构、机械等 | ||||||
8寸晶圆/(kgCO2·片–1) | 322.1 | 2022 | 中国台湾 | 硅晶圆,用于制造晶闸管 | ||||||
加工 工艺 | 热浸镀锌工艺/(tCO2·t–1) | 1.46 | 2022 | 中国安徽 | 用于对钢材进行热镀锌防腐处理 | |||||
导线加工工艺/(tCO2·km–1) | 0.15 | 2020 | 中国 | 用于生产钢芯铝绞线、铝包钢绞线等导线 | ||||||
能源 | 电力/(tCO2·(MW·h)–1) | 0.536 6 | 2022 | 中国 | 全国电力平均二氧化碳因子 | |||||
石油/(tCO2·t–1) | 2.5 | 2015 | 中国黑龙江 | 用于制造变压器油 |
导线计算内容 | 名称及单位 | 数值 | ||
原材料活动量 | 铝质量/t | 20 000 | ||
钢质量/t | 2 498 | |||
工艺活动量 | 导线长度/km | 7 315 | ||
碳排放量 | 原材料/tCO2 | 411 857 | ||
工艺/tCO2 | 1 090 | |||
总量/tCO2 | 412 947 |
表 2 JL1/G3A-1000/45导线分解统计法核算结果
Table 2 Accounting results of JL1/G3A-1000/45 wires using the disaggregated method
导线计算内容 | 名称及单位 | 数值 | ||
原材料活动量 | 铝质量/t | 20 000 | ||
钢质量/t | 2 498 | |||
工艺活动量 | 导线长度/km | 7 315 | ||
碳排放量 | 原材料/tCO2 | 411 857 | ||
工艺/tCO2 | 1 090 | |||
总量/tCO2 | 412 947 |
变压器活 动量组成 | ABB变压器单位容 量的活动量/(kg·(MV·A)–1) 或((kW·h)·(MV·A)–1) | 算例变压器碳 排放量/tCO2 | ||
铝 | 8.0 | 62 | ||
铜排 | 95 | 979 | ||
铜线 | 1.6 | 16 | ||
钢 | 182 | 163 | ||
硅钢 | 269 | 195 | ||
油漆 | 0.4 | 0.3 | ||
瓷 | 8.0 | 3.8 | ||
树脂 | 0.8 | 21 | ||
变压器油 | 192 | 183 | ||
电能耗量 | 37 100 | 7 585 | ||
总量 | 9 208 |
表 3 400 kV变压器参数适配法核算结果
Table 3 Accounting results of 400 kV transformers using the parameter matching method
变压器活 动量组成 | ABB变压器单位容 量的活动量/(kg·(MV·A)–1) 或((kW·h)·(MV·A)–1) | 算例变压器碳 排放量/tCO2 | ||
铝 | 8.0 | 62 | ||
铜排 | 95 | 979 | ||
铜线 | 1.6 | 16 | ||
钢 | 182 | 163 | ||
硅钢 | 269 | 195 | ||
油漆 | 0.4 | 0.3 | ||
瓷 | 8.0 | 3.8 | ||
树脂 | 0.8 | 21 | ||
变压器油 | 192 | 183 | ||
电能耗量 | 37 100 | 7 585 | ||
总量 | 9 208 |
换流阀计算内容 | 名称及单位 | 数值 | ||
原材料活动量 | 硅片总质量/t | 0.73 | ||
钼片总质量/t | 0.36 | |||
铝片总质量/t | 0.22 | |||
铁芯总质量/t | 17 | |||
工艺活动量 | 晶闸管装配及试验电耗/(MW·h) | 177 | ||
电抗器装配及阀塔试验电耗/(MW·h) | 318 | |||
碳排放量 | 原材料碳排放/tCO2 | 2 135 | ||
工艺碳排放/tCO2 | 266 | |||
总碳排放/tCO2 | 2 401 |
表 4 空气绝缘悬吊式换流阀工艺溯源法核算结果
Table 4 Accounting results of air insulated suspended converter valves using the traceability method
换流阀计算内容 | 名称及单位 | 数值 | ||
原材料活动量 | 硅片总质量/t | 0.73 | ||
钼片总质量/t | 0.36 | |||
铝片总质量/t | 0.22 | |||
铁芯总质量/t | 17 | |||
工艺活动量 | 晶闸管装配及试验电耗/(MW·h) | 177 | ||
电抗器装配及阀塔试验电耗/(MW·h) | 318 | |||
碳排放量 | 原材料碳排放/tCO2 | 2 135 | ||
工艺碳排放/tCO2 | 266 | |||
总碳排放/tCO2 | 2 401 |
设备及 材料 | 活动量获取方法及来源 | 活动量名称 | 数值 | |||
换流阀 晶闸管 | 工艺溯源法:项目资料、文献、换流阀制造商碳足迹报告[ | 晶闸管总数/个 | 2 880 | |||
硅片质量/kg | 734 | |||||
铝片质量/kg | 212 | |||||
生产耗电量/(MW·h) | 178 | |||||
变压器 | 参数适配法:项目资料、变压器制造商碳足迹报 告[ | 钢及硅钢质量/t | 6 886 | |||
铜质量/t | 3 017 | |||||
铝质量/t | 212 | |||||
变压器油质量/t | 4 005 | |||||
生产耗电量/(GW·h) | 761 | |||||
GIS | 参数适配法:项目资料、GIS制造商碳足迹报告[ | 铝质量/t | 12 661 | |||
铜质量/t | 1 339 | |||||
钢质量/t | 2 867 | |||||
SF6泄漏量/t | 3.7 | |||||
导线 | 分解统计法:项目资料、国家标准[ | 铝质量/t | 75 028 | |||
钢质量/t | 16 687 | |||||
杆塔材料 | 分解统计法:项目资料 | 铁塔钢材质量/t | 387 585 | |||
金具 | 分解统计法:项目资料、国家标准[ | 钢和铁质量/t | 17 489 | |||
铝质量/t | 1 002 | |||||
绝缘子 | 分解统计法:项目资料、文献[ | 玻璃质量/t | 22 105 | |||
钢质量/t | 12 745 | |||||
生产耗电量/t | 12 025 |
表 5 关键活动量计算结果
Table 5 Calculation results of key activity data
设备及 材料 | 活动量获取方法及来源 | 活动量名称 | 数值 | |||
换流阀 晶闸管 | 工艺溯源法:项目资料、文献、换流阀制造商碳足迹报告[ | 晶闸管总数/个 | 2 880 | |||
硅片质量/kg | 734 | |||||
铝片质量/kg | 212 | |||||
生产耗电量/(MW·h) | 178 | |||||
变压器 | 参数适配法:项目资料、变压器制造商碳足迹报 告[ | 钢及硅钢质量/t | 6 886 | |||
铜质量/t | 3 017 | |||||
铝质量/t | 212 | |||||
变压器油质量/t | 4 005 | |||||
生产耗电量/(GW·h) | 761 | |||||
GIS | 参数适配法:项目资料、GIS制造商碳足迹报告[ | 铝质量/t | 12 661 | |||
铜质量/t | 1 339 | |||||
钢质量/t | 2 867 | |||||
SF6泄漏量/t | 3.7 | |||||
导线 | 分解统计法:项目资料、国家标准[ | 铝质量/t | 75 028 | |||
钢质量/t | 16 687 | |||||
杆塔材料 | 分解统计法:项目资料 | 铁塔钢材质量/t | 387 585 | |||
金具 | 分解统计法:项目资料、国家标准[ | 钢和铁质量/t | 17 489 | |||
铝质量/t | 1 002 | |||||
绝缘子 | 分解统计法:项目资料、文献[ | 玻璃质量/t | 22 105 | |||
钢质量/t | 12 745 | |||||
生产耗电量/t | 12 025 |
设备及材料 | 碳排放量 | |
换流阀关键器件 | 2 401 | |
变压器 | 560 860 | |
GIS | 414 156 | |
导线 | 1 566 630 | |
杆塔材料 | 1 488 328 | |
金具 | 60 233 | |
绝缘子 | 75 371 | |
总量 | 4 167 979 |
表 6 某特高压直流工程关键设备与材料碳排放核算结果
Table 6 Accounting results of key electric equipment and materials in an ultra-high voltage direct current transmission project 单位:tCO2
设备及材料 | 碳排放量 | |
换流阀关键器件 | 2 401 | |
变压器 | 560 860 | |
GIS | 414 156 | |
导线 | 1 566 630 | |
杆塔材料 | 1 488 328 | |
金具 | 60 233 | |
绝缘子 | 75 371 | |
总量 | 4 167 979 |
文献研究对象 | 文献研究结论 | 本文研究结论 | ||
英国输变电网络,共计22 670 km架空线路,887 km地下电缆,681座变电站[ | 原材料铝碳排放占总量的40%,钢占比20%,铜占比5% | 原材料铝碳排放占总量的43.3%,钢占比23.6%,铜占比2.8% | ||
挪威输变电网络,共计10 971 km架空线路, | 架空线路碳排放占总量的63%,变压器占比12%,GIS占比15% | 架空线路碳排放占总量的73.3%,变压器占比13.5%,GIS占比10.0% | ||
中国特高压输电线路,8条±800 kV线路,14条 | 导线和杆塔材料碳排放占线路四大关键设备碳排放总量的89.6% | 导线和杆塔材料碳排放占线路四大关键设备碳排放总量的95.7% |
表 7 计算结果与现有研究成果对比
Table 7 Result comparison with existing research findings
文献研究对象 | 文献研究结论 | 本文研究结论 | ||
英国输变电网络,共计22 670 km架空线路,887 km地下电缆,681座变电站[ | 原材料铝碳排放占总量的40%,钢占比20%,铜占比5% | 原材料铝碳排放占总量的43.3%,钢占比23.6%,铜占比2.8% | ||
挪威输变电网络,共计10 971 km架空线路, | 架空线路碳排放占总量的63%,变压器占比12%,GIS占比15% | 架空线路碳排放占总量的73.3%,变压器占比13.5%,GIS占比10.0% | ||
中国特高压输电线路,8条±800 kV线路,14条 | 导线和杆塔材料碳排放占线路四大关键设备碳排放总量的89.6% | 导线和杆塔材料碳排放占线路四大关键设备碳排放总量的95.7% |
不确定敏感因子 | 变化率/% | 敏感度系数 | ||||||||||||||
–30 | –20 | –10 | 0 | 10 | 20 | 30 | ||||||||||
铝 | 3 626 555 | 3 807 030 | 3 987 504 | 4 167 979 | 4 348 454 | 4 528 928 | 4 709 403 | |||||||||
热浸镀锌工艺 | 3 998 217 | 4 054 804 | 4 111 392 | 4 167 979 | 4 224 566 | 4 281 154 | 4 337 741 | 0.135 8 | ||||||||
电力 | 4 043 374 | 4 084 909 | 4 126 444 | 4 167 979 | 4 209 514 | 4 251 049 | 4 292 584 | 0.099 7 | ||||||||
冷轧钢板及钢带 | 4 067 207 | 4 100 798 | 4 134 388 | 4 167 979 | 4 201 570 | 4 235 160 | 4 268 751 | 0.080 6 | ||||||||
热连轧钢板及钢带 | 4 078 834 | 4 108 549 | 4 138 264 | 4 167 979 | 4 197 694 | 4 227 409 | 4 257 124 | 0.071 3 | ||||||||
型钢 | 4 081 160 | 4 110 100 | 4 139 039 | 4 167 979 | 4 196 919 | 4 225 858 | 4 254 798 | 0.069 4 | ||||||||
钢 | 4 149 681 | 4 155 780 | 4 161 880 | 4 167 979 | 4 174 078 | 4 180 178 | 4 186 277 | 0.014 6 | ||||||||
铜 | 4 131 866 | 4 143 904 | 4 155 941 | 4 167 979 | 4 180 017 | 4 192 054 | 4 204 092 | 0.028 9 | ||||||||
玻璃 | 4 158 695 | 4 161 790 | 4 164 884 | 4 167 979 | 4 171 074 | 4 174 168 | 4 177 263 | 0.007 4 | ||||||||
聚酯树脂 | 4 164 759 | 4 165 832 | 4 166 906 | 4 167 979 | 4 169 052 | 4 170 126 | 4 171 199 | 0.002 6 | ||||||||
变压器油 | 4 164 938 | 4 165 951 | 4 166 965 | 4 167 979 | 4 168 993 | 4 170 007 | 4 171 020 | 0.002 4 | ||||||||
导线加工工艺 | 4 166 676 | 4 167 110 | 4 167 545 | 4 167 979 | 4 168 413 | 4 168 848 | 4 169 282 | 0.001 0 | ||||||||
瓷 | 4 167 895 | 4 167 923 | 4 167 951 | 4 167 979 | 4 168 007 | 4 168 035 | 4 168 063 | 0.000 1 |
表 8 敏感性分析结果
Table 8 Sensitive analysis results of key emission factors
不确定敏感因子 | 变化率/% | 敏感度系数 | ||||||||||||||
–30 | –20 | –10 | 0 | 10 | 20 | 30 | ||||||||||
铝 | 3 626 555 | 3 807 030 | 3 987 504 | 4 167 979 | 4 348 454 | 4 528 928 | 4 709 403 | |||||||||
热浸镀锌工艺 | 3 998 217 | 4 054 804 | 4 111 392 | 4 167 979 | 4 224 566 | 4 281 154 | 4 337 741 | 0.135 8 | ||||||||
电力 | 4 043 374 | 4 084 909 | 4 126 444 | 4 167 979 | 4 209 514 | 4 251 049 | 4 292 584 | 0.099 7 | ||||||||
冷轧钢板及钢带 | 4 067 207 | 4 100 798 | 4 134 388 | 4 167 979 | 4 201 570 | 4 235 160 | 4 268 751 | 0.080 6 | ||||||||
热连轧钢板及钢带 | 4 078 834 | 4 108 549 | 4 138 264 | 4 167 979 | 4 197 694 | 4 227 409 | 4 257 124 | 0.071 3 | ||||||||
型钢 | 4 081 160 | 4 110 100 | 4 139 039 | 4 167 979 | 4 196 919 | 4 225 858 | 4 254 798 | 0.069 4 | ||||||||
钢 | 4 149 681 | 4 155 780 | 4 161 880 | 4 167 979 | 4 174 078 | 4 180 178 | 4 186 277 | 0.014 6 | ||||||||
铜 | 4 131 866 | 4 143 904 | 4 155 941 | 4 167 979 | 4 180 017 | 4 192 054 | 4 204 092 | 0.028 9 | ||||||||
玻璃 | 4 158 695 | 4 161 790 | 4 164 884 | 4 167 979 | 4 171 074 | 4 174 168 | 4 177 263 | 0.007 4 | ||||||||
聚酯树脂 | 4 164 759 | 4 165 832 | 4 166 906 | 4 167 979 | 4 169 052 | 4 170 126 | 4 171 199 | 0.002 6 | ||||||||
变压器油 | 4 164 938 | 4 165 951 | 4 166 965 | 4 167 979 | 4 168 993 | 4 170 007 | 4 171 020 | 0.002 4 | ||||||||
导线加工工艺 | 4 166 676 | 4 167 110 | 4 167 545 | 4 167 979 | 4 168 413 | 4 168 848 | 4 169 282 | 0.001 0 | ||||||||
瓷 | 4 167 895 | 4 167 923 | 4 167 951 | 4 167 979 | 4 168 007 | 4 168 035 | 4 168 063 | 0.000 1 |
1 | IEA. CO2 emissions in 2023[R/OL]. (2024-03-01) [2024-11-27]. https://www.iea.org/reports/co2-emissions-in-2023#overview. |
2 | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 中华人民共和国国务院公报, 2020(28): 5–7. |
3 |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23 (6): 1- 14.
DOI |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23 (6): 1- 14.
DOI |
|
4 | 陈胜, 卫志农, 顾伟, 等. 碳中和目标下的能源系统转型与变革: 多能流协同技术[J]. 电力自动化设备, 2021, 41 (9): 3- 12. |
CHEN Sheng, WEI Zhinong, GU Wei, et al. Carbon neutral oriented transition and revolution of energy systems: multi-energy flow coordination technology[J]. Electric Power Automation Equipment, 2021, 41 (9): 3- 12. | |
5 | XU J, GUAN Y, OLDFIELD J, et al. China carbon emission accounts 2020-2021[J]. Applied Energy, 2024, 360, 122837. |
6 | 郑国光. 支撑“双碳”目标实现的问题辨识与关键举措研究[J]. 中国电力, 2023, 56 (11): 1- 8. |
ZHENG Guoguang. Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (11): 1- 8. | |
7 | 周原冰, 张士宁, 侯方心, 等. 电力行业碳达峰及促进全社会碳减排影响分析[J]. 中国电力, 2024, 57 (9): 1- 9. |
ZHOU Yuanbing , ZHANG Shining, HOU Fangxin , et al. Analysis of carbon peaking in power sector and its impact on promoting whole-society carbon emissions reduction[J]. Electric Power, 2024, 57 (9): 1- 9. | |
8 | 陈晓红, 付益鹏, 黄骋东, 等. 特高压工程建设碳排放测算方法与应用[J]. 资源科学, 2023, 45 (12): 2291- 2310. |
CHEN Xiaohong, FU Yipeng, HUANG Chengdong, et al. Method and application of carbon emission calculation for ultra- high voltage (UHV) project construction[J]. Resources Science, 2023, 45 (12): 2291- 2310. | |
9 | WEI W, LI J, CHEN B, et al. Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure[J]. Nature Sustainability, 2021, 4 (8): 739- 747. |
10 | LI F, YE Z, XIAO X, et al. Material stocks and flows of power infrastructure development in China[J]. Resources, Conservation and Recycling, 2020, 160, 104906. |
11 | 国家电网. 国家电网公司“碳达峰、碳中和”行动方案[J]. 国家电网, 2021, (3): 50–52. |
12 | 李小冬, 朱辰. 我国建筑碳排放核算及影响因素研究综述[J]. 安全与环境学报, 2020, 20 (1): 317- 327. |
LI Xiaodong, ZHU Chen. Summary of research on account of carbon emission in building industry and analysis of its influential factors[J]. Journal of Safety and Environment, 2020, 20 (1): 317- 327. | |
13 | 闫云凤, 赵忠秀. 中国对外贸易隐含碳的测度研究—基于碳排放责任界定的视角[J]. 国际贸易问题, 2012, (1): 131- 142. |
YAN Yunfeng, ZHAO Zhongxiu. CO2 emissions embodied in China's international trade: a perspective of allocating international responsibilities[J]. Journal of International Trade, 2012, (1): 131- 142. | |
14 | 刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34 (2): 248- 258. |
LIU Mingda, MENG Jijun, LIU Bihan. Progress in the studies of carbon emission estimation[J]. Tropical Geography, 2014, 34 (2): 248- 258. | |
15 | 张喜泽. 上海公里级高温超导电缆输电工程碳排放分析[J]. 低温与超导, 2022, 50 (12): 21- 24, 39. |
ZHANG Xize. Carbon emission analysis of Shanghai kilometer-scale HTS cable transmission project[J]. Cryogenics & Superconductivity, 2022, 50 (12): 21- 24, 39. | |
16 | TURCONI R, SIMONSEN C G, BYRIEL I P, et al. Life cycle assessment of the Danish electricity distribution network[J]. The International Journal of Life Cycle Assessment, 2014, 19, 100- 108. |
17 | JORGE R S, HERTWICH E G. Environmental evaluation of power transmission in Norway[J]. Applied energy, 2013, 101, 513- 520. |
18 | 游一民, 彭振搏, 戴冬云, 等. 40.5 kV C-GIS全生命周期内碳排放计算与分析[J]. 高压电器, 2022, 58 (9): 13- 19. |
YOU Yimin, PENG Zhenbo, DAI Dongyun, et al. Calculation and analysis of carbon emission in the whole life cycle of 40.5 kV C-GIS[J]. High Voltage Apparatus, 2022, 58 (9): 13- 19. | |
19 | 王珊珊, 张寒, 杨红强. 中国人造板行业的生命周期碳足迹和能源耗用评估[J]. 资源科学, 2019, 41 (3): 521- 531. |
WANG Shanshan, ZHANG Han, YANG Hongqiang. Carbon footprint and energy consumption based on life cycle assessment of wood-based panel industry in China[J]. Resources Science, 2019, 41 (3): 521- 531. | |
20 | IPCC. 2006 IPCC guidance for national greenhouse gas inventories[R]. Japan: IGES, 2006. |
21 | 国家标准化管理委员会. 工业企业温室气体排放核算和报告通则: GB/T 32150—2015[S]. 北京: 中国标准出版社, 2015. |
22 | WEI W, WANG M, ZHANG P, et al. A 2015 inventory of embodied carbon emissions for Chinese power transmission infrastructure projects[J]. Scientific data, 2020, 7 (1): 318. |
23 | WEI W, WU X, LI J, et al. Ultra-high voltage network induced energy cost and carbon emissions[J]. Journal of Cleaner Production, 2018, 178, 276- 292. |
24 | JORGE R S, HAWKINS T R, HERTWICH E G. Life cycle assessment of electricity transmission and distribution—part 1: power lines and cables[J]. The International Journal of Life Cycle Assessment, 2012, 17, 9- 15. |
25 | BLACKETT G, SAVORY E, TOY N, et al. An evaluation of the environmental burdens of present and alternative materials used for electricity transmission[J]. Building and environment, 2008, 43 (7): 1326- 1338. |
26 | BUMBY S, DRUZHININA E, FERALDI R, et al. Life cycle assessment of overhead and underground primary power distribution[J]. Environmental science & technology, 2010, 44 (14): 5587- 5593. |
27 | HARRISON G P, KARAMANLIS S, OCHOA L F. Life cycle assessment of the transmission network in Great Britain[J]. Energy policy, 2010, 38 (7): 3622- 3631. |
28 | JORGE R S, HAWKINS T R, HERTWICH E G. Life cycle assessment of electricity transmission and distribution—part 2: transformers and substation equipment[J]. The International Journal of Life Cycle Assessment, 2012, 17, 184- 191. |
29 | 省级温室气体清单编制指南编写组. 省级温室气体清单编制指南[R]. 北京: 国家发展和改革委员会, 2011. |
30 | 郭春, 郭亚林, 陈政. 交通隧道工程碳排放核算及研究进展分析[J]. 现代隧道技术, 2023, 60 (1): 1- 10. |
GUO Chun, GUO Yalin, CHEN Zheng. Carbon emission accounting and research progress analysis of traffic tunnel engineering[J]. Modern Tunnelling Technology, 2023, 60 (1): 1- 10. | |
31 | ABB. Environmental product declaration[R/OL]. (2003-11-25) [2023-08-14]. https://library.abb.com. |
32 | 李侠, SACHS G, UDER M. ±800 kV特高压直流输电用6英寸大功率晶闸管换流阀[J]. 高压电器, 2010, 46 (6): 1- 5. |
LI Xia, SACHS G, UDER M. 6 inch high power thyristor valves for ±800 kV UHVDC transmission[J]. High Voltage Apparatus, 2010, 46 (6): 1- 5. | |
33 | 中国城市温室气体工作组(CCG). 中国产品全生命周期温室气体排放系数库[EB/OL], 2022. http://lca.cityghg.com/. |
34 | 西安西电电力系统有限公司. 换流阀产品碳足迹报告[R/OL]. (2021-03-15) [2024-12-15]. http://www.xdps.com.cn/info/1085/2342.htm. |
35 | 国家标准化管理委员会. 圆线同心绞架空导线: GB/T 1179—2017 [S]. 北京: 中国标准出版社, 2017. |
36 | 国家标准化管理委员会. ±800kV直流输电线路金具技术规范: GB/T 31235—2014 [S]. 北京: 中国标准出版社, 2014. |
37 | 彭卓, 郭春梅, 汪磊磊, 等. 绿色建筑全生命周期CO2排放敏感性与减碳潜力研究[J]. 天津城建大学学报, 2021, 27 (6): 436- 441. |
PENG Zhuo, GUO Chunmei, WANG Leilei, et al. Total life-cycle analysis of CO2 emission sensitivity and reduction potential of green building[J]. Journal of Tianjin Chengjian University, 2021, 27 (6): 436- 441. |
[1] | 赵彤, 李雪松, 周浩, 丁羽, 杨斌, 王文涛, 王鹏. 基于动态碳排放强度的电碳市场耦合建模方法及市场优化机制分析[J]. 中国电力, 2025, 58(4): 31-43. |
[2] | 周飞航, 王灏, 王海利, 王萌, 金耀杰, 李重春, 张忠德, 王鹏. 基于多智能体强化学习的电-碳-绿证耦合市场下多市场主体行为研究[J]. 中国电力, 2025, 58(4): 44-55. |
[3] | 张峰, 姜继双, 李超, 夏芝香, 戴莉, 王凯歌, 方梦祥, 骆仲泱. 基于GHGP标准体系的输变电工程建设碳排放量化分析[J]. 中国电力, 2025, 58(4): 205-215. |
[4] | 徐祥海, 商佳宜, 赵天煜, 龚莺飞, 何卫斌, 汤亚宸. 考虑碳排放限制与市场参与的储能利润优化[J]. 中国电力, 2025, 58(3): 204-212. |
[5] | 李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152. |
[6] | 周原冰, 张士宁, 侯方心, 任宏涛, 徐鹏飞. 电力行业碳达峰及促进全社会碳减排影响分析[J]. 中国电力, 2024, 57(9): 1-9. |
[7] | 傅观君, 张富强, 夏鹏, 冯君淑, 张晋芳. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57(8): 67-74. |
[8] | 王栋, 冯景丽, 李达, 牛静伟, 李军. 基于区块链的园区碳排放可信监测模型[J]. 中国电力, 2024, 57(7): 182-187. |
[9] | 刘含笑, 单思珂, 魏书洲, 于立元, 王帅, 刘美玲, 崔盈. 基于生命周期法的煤电碳足迹评估[J]. 中国电力, 2024, 57(7): 227-237. |
[10] | 吴静, 刘轩宇, 李响, 齐笑言, 李成俊, 张忠. 考虑网损的电力系统节点边际碳势理论研究与建模[J]. 中国电力, 2024, 57(6): 215-224. |
[11] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[12] | 李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112. |
[13] | 李祥光, 谭青博, 李帆琪, 李旭东, 谭忠富. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125. |
[14] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[15] | 王帅, 黄越辉, 聂元弘, 刘思扬. 基于生产模拟的受端电网新能源发展场景研究[J]. 中国电力, 2024, 57(5): 240-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||