中国电力 ›› 2025, Vol. 58 ›› Issue (12): 73-85.DOI: 10.11930/j.issn.1004-9649.202502060
• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇
贾东梨1(
), 刘佳静1(
), 詹惠瑜1(
), 王焕昌1,2(
), 卜强生3(
)
收稿日期:2025-02-25
修回日期:2025-11-06
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
JIA Dongli1(
), LIU Jiajing1(
), ZHAN Huiyu1(
), WANG Huanchang1,2(
), BU Qiangsheng3(
)
Received:2025-02-25
Revised:2025-11-06
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
高比例可再生能源并网和多样化负荷接入加剧了新型配电系统高运行成本和高电压偏差运行风险。针对目前新型配电系统配置阶段未在多时间尺度下考虑运行风险和多元时空灵活性资源协同配置的问题,提出考虑运行风险的新型配电系统多元时空灵活性资源协同配置模型。首先,采用蒙特卡洛抽样和K-means聚类算法生成源-荷场景集,并利用多尺度形态学算法对源-荷曲线波形进行多尺度分解;然后,基于条件风险价值(conditional value at risk,CVaR)理论量化评估配电系统多时间尺度运行风险,并在此基础上建立考虑运行风险的新型配电系统多元时空灵活性资源双层配置模型。其中,上层以配电系统年综合成本最小为目标函数对多元时空灵活性资源进行协同配置,下层以期望损失值和基于CVaR的运行风险值最小为目标对系统进行运行优化。最后,通过改进的IEEE 33节点系统进行算例分析,结果表明:所提方法可以有效降低配电系统高运行成本和高电压偏差的运行风险。
贾东梨, 刘佳静, 詹惠瑜, 王焕昌, 卜强生. 考虑运行风险的新型配电系统多元时空灵活性资源协同配置[J]. 中国电力, 2025, 58(12): 73-85.
JIA Dongli, LIU Jiajing, ZHAN Huiyu, WANG Huanchang, BU Qiangsheng. Collaborative Configuration of Multi-temporal and Spatial Flexible Resources in New Distribution Systems Considering Operational Risks[J]. Electric Power, 2025, 58(12): 73-85.
| 灵活性 资源 | 特性分析 | 适合参与调节的时间尺度 | ||||
| 上级主网 | 多为燃煤机组供电,调节速率较慢 | 15 min~1 h | ||||
| GT | FTGT | 调节速率较快,快速启停,频繁启停下仍能保持可靠性和耐久性 | 1~30 min | |||
| MGT | 调节速率较慢,启停较快,但耐受应力能力差,不能频繁启停 | 15 min~1 h | ||||
| ESS | SC | 可快速动态响应、循环寿命长、充放电效率高,但容量密度较小 | 1~15 min | |||
| BES | 容量密度大、造价低,但响应速度慢,循环寿命短 | 15~30 min | ||||
| DR | IE | 需要提前与用户签订合同进行约束,响应速度较快,但其调节资源的大小与用户用电负荷有关 | 1~15 min | |||
表 1 时间型灵活性资源分析
Table 1 Analysis of temporal flexible resources
| 灵活性 资源 | 特性分析 | 适合参与调节的时间尺度 | ||||
| 上级主网 | 多为燃煤机组供电,调节速率较慢 | 15 min~1 h | ||||
| GT | FTGT | 调节速率较快,快速启停,频繁启停下仍能保持可靠性和耐久性 | 1~30 min | |||
| MGT | 调节速率较慢,启停较快,但耐受应力能力差,不能频繁启停 | 15 min~1 h | ||||
| ESS | SC | 可快速动态响应、循环寿命长、充放电效率高,但容量密度较小 | 1~15 min | |||
| BES | 容量密度大、造价低,但响应速度慢,循环寿命短 | 15~30 min | ||||
| DR | IE | 需要提前与用户签订合同进行约束,响应速度较快,但其调节资源的大小与用户用电负荷有关 | 1~15 min | |||
| 参数 | 数值 | 参数 | 数值 | |||
| d/% | 8 | BES | 10 | |||
| FTGT | 10 | |||||
| CCGT | FTGT | |||||
| SC | CCGT | |||||
| SC | SC | 500 | ||||
| BES | BES | 600 | ||||
| BES | SC | |||||
| BES | ||||||
| FTGT | 15 | 800 | ||||
| CCGT | 20 | CCGT | 1 | |||
| SC | 20 | FTGT | 0.5 | |||
| BES | 10 | CCGT | 2 | |||
| 20 | FTGT | 1 | ||||
| 0.01 | FTGT | 0.4 | ||||
| 0.01 | CCGT | 0.45 | ||||
| 0.01 | ||||||
| FTGT | 10 | |||||
| CCGT | 10 | FTGT | ||||
| SC | 10 | FTGT | ||||
| BES | 10 | CCGT | ||||
| SC | 10 | CCGT | 800 | |||
| 900 | 300 | |||||
| SC | 0.95 | 1.03 | ||||
| SC | 0.95 | 0.97 | ||||
| BES | 0.9 | 0.35 | ||||
| BES | 0.9 | 0.36 | ||||
| SC | 0.95 | 0.36 | ||||
| SC | 0.05 | 2.91 | ||||
| BES | 0.90 | CCGT | 0.4 | |||
| BES | 0.10 | FTGT | 0.35 | |||
表 2 相关参数
Table 2 Relevant Parameters
| 参数 | 数值 | 参数 | 数值 | |||
| d/% | 8 | BES | 10 | |||
| FTGT | 10 | |||||
| CCGT | FTGT | |||||
| SC | CCGT | |||||
| SC | SC | 500 | ||||
| BES | BES | 600 | ||||
| BES | SC | |||||
| BES | ||||||
| FTGT | 15 | 800 | ||||
| CCGT | 20 | CCGT | 1 | |||
| SC | 20 | FTGT | 0.5 | |||
| BES | 10 | CCGT | 2 | |||
| 20 | FTGT | 1 | ||||
| 0.01 | FTGT | 0.4 | ||||
| 0.01 | CCGT | 0.45 | ||||
| 0.01 | ||||||
| FTGT | 10 | |||||
| CCGT | 10 | FTGT | ||||
| SC | 10 | FTGT | ||||
| BES | 10 | CCGT | ||||
| SC | 10 | CCGT | 800 | |||
| 900 | 300 | |||||
| SC | 0.95 | 1.03 | ||||
| SC | 0.95 | 0.97 | ||||
| BES | 0.9 | 0.35 | ||||
| BES | 0.9 | 0.36 | ||||
| SC | 0.95 | 0.36 | ||||
| SC | 0.05 | 2.91 | ||||
| BES | 0.90 | CCGT | 0.4 | |||
| BES | 0.10 | FTGT | 0.35 | |||
| 模式 | FTGT(节点) 容量/kW | MGT(节点) 容量/kW | BES(节点)容 量/(kW, kW·h) | SC(节点)容 量/(kW, kW·h) | SOP(位置)容 量/(kV·A) | CESS,inv/ 万元 | CGT,inv/ 万元 | CSOP,inv/ 万元 | Cope/ 万元 | 年综合成 本/万元 | ||||||||||
| 1 | ||||||||||||||||||||
| 2 | (15)320 | (17) | (31)(330, 710) | (12)(420, 200) | 65.7 | 38.8 | ||||||||||||||
| 3 | (13)270 | (13) | (13)(280, 680) | (13)(330, 180) | (TS5)500 | 58.7 | 32.7 | 50.9 | ||||||||||||
| 4 | (13)300 | (13) | (13)(300, 720) | (13)(340, 300) | (TS5)500 | 61.9 | 34.2 | 50.9 |
表 3 不同模式下的配置方案
Table 3 Configuration schemes under different modes
| 模式 | FTGT(节点) 容量/kW | MGT(节点) 容量/kW | BES(节点)容 量/(kW, kW·h) | SC(节点)容 量/(kW, kW·h) | SOP(位置)容 量/(kV·A) | CESS,inv/ 万元 | CGT,inv/ 万元 | CSOP,inv/ 万元 | Cope/ 万元 | 年综合成 本/万元 | ||||||||||
| 1 | ||||||||||||||||||||
| 2 | (15)320 | (17) | (31)(330, 710) | (12)(420, 200) | 65.7 | 38.8 | ||||||||||||||
| 3 | (13)270 | (13) | (13)(280, 680) | (13)(330, 180) | (TS5)500 | 58.7 | 32.7 | 50.9 | ||||||||||||
| 4 | (13)300 | (13) | (13)(300, 720) | (13)(340, 300) | (TS5)500 | 61.9 | 34.2 | 50.9 |
| 优化结果 | 模式1 | 模式2 | 模式3 | 模式4 | ||||
| 主网购电成本/万元 | 786.4 | 762.1 | 747.5 | |||||
| 网损成本/万元 | 31.6 | 28.4 | 25.1 | 24.6 | ||||
| GT运行成本/万元 | 0 | 279.5 | 238.4 | 251.5 | ||||
| DR补偿成本/万元 | 43.1 | 32.9 | 25.4 | 25.5 | ||||
| 弃风成本/万元 | 74.4 | 11.1 | 18.5 | 12.4 | ||||
| 总运行成本/万元 | ||||||||
| 运行成本风险/万元 | ||||||||
| 电压偏差风险 | 3.89 | 1.9 | 1.81 | 1.55 |
表 4 不同模式下的优化结果对比
Table 4 Comparison of optimization results under different modes
| 优化结果 | 模式1 | 模式2 | 模式3 | 模式4 | ||||
| 主网购电成本/万元 | 786.4 | 762.1 | 747.5 | |||||
| 网损成本/万元 | 31.6 | 28.4 | 25.1 | 24.6 | ||||
| GT运行成本/万元 | 0 | 279.5 | 238.4 | 251.5 | ||||
| DR补偿成本/万元 | 43.1 | 32.9 | 25.4 | 25.5 | ||||
| 弃风成本/万元 | 74.4 | 11.1 | 18.5 | 12.4 | ||||
| 总运行成本/万元 | ||||||||
| 运行成本风险/万元 | ||||||||
| 电压偏差风险 | 3.89 | 1.9 | 1.81 | 1.55 |
图 10 风险参数$ \omega $对配电系统等年值投资成本和运行成本风险值的影响
Fig.10 Impact of risk parameter $ \omega $ on distribution system annual investment cost and operational cost risk value
| 1 |
舒印彪, 汤涌, 张正陵, 等. 新型配电网构建及其关键技术[J]. 中国电机工程学报, 2024, 44 (17): 6721- 6733.
DOI |
|
SHU Yinbiao, TANG Yong, ZHANG Zhengling, et al. Construction of new distribution network and its key technologies[J]. Proceedings of the CSEE, 2024, 44 (17): 6721- 6733.
DOI |
|
| 2 |
王伟, 朱江, 魏兴慎, 等. 面向新型配电系统的网络安全脆弱性评估[J]. 电力信息与通信技术, 2024, 22 (8): 37- 44.
DOI |
|
WANG Wei, ZHU Jiang, WEI Xingshen, et al. Network security vulnerability assessment for new distribution systems[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 37- 44.
DOI |
|
| 3 |
WANG K, WANG C F, ZHANG Z W, et al. Multi-timescale active distribution network optimal dispatching based on SMPC[J]. IEEE Transactions on Industry Applications, 2022, 58 (2): 1644- 1653.
DOI |
| 4 |
ZAMZAM T, SHABAN K, GAOUDA A, et al. Performance assessment of two-timescale multi-objective volt/var optimization scheme considering EV charging stations, BESSs, and RESs in active distribution networks[J]. Electric Power Systems Research, 2022, 207, 107843.
DOI |
| 5 |
韩宇, 周前, 李勇, 等. 户用光伏接入的低压配电网电能质量问题分析与附加损耗量化评估[J]. 电力科学与技术学报, 2024, 39 (3): 177- 186.
DOI |
|
HAN Yu, ZHOU Qian, LI Yong, et al. Analysis of power quality issues and quantitative evaluation of additional losses in low voltage distribution networks connected to household photovoltaics[J]. Journal of Electric Power Science and Technology, 2024, 39 (3): 177- 186.
DOI |
|
| 6 |
AZIZI A, VAHIDI B, NEMATOLLAHI A F. Reconfiguration of active distribution networks equipped with soft open points considering protection constraints[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11 (1): 212- 222.
DOI |
| 7 | HE Y, WU H, BI R, et al. Coordinated planning of distributed generation and soft open points in active distribution network based on complete information dynamic game[J]. International Journal of Electrical Power & Energy Systems, 2022, 138, 107953. |
| 8 | 王洪坤, 王守相, 潘志新, 等. 含高渗透分布式电源配电网灵活性提升优化调度方法[J]. 电力系统自动化, 2018, 42 (15): 86- 93. |
| WANG Hongkun, WANG Shouxiang, PAN Zhixin, et al. Optimized dispatching method for flexibility improvement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems, 2018, 42 (15): 86- 93. | |
| 9 |
米伟铭, 叶鹏, 张明理, 等. 基于云模型的新型配电系统灵活性评估方法[J]. 电网技术, 2024, 48 (6): 2532- 2540.
DOI |
|
MI Weiming, YE Peng, ZHANG Mingli, et al. Novel flexibility evaluation for distribution systems based on cloud models[J]. Power System Technology, 2024, 48 (6): 2532- 2540.
DOI |
|
| 10 |
高万胜, 蔺红. 考虑配电网灵活性不足风险的分布鲁棒低碳优化调度[J]. 电力系统保护与控制, 2024, 52 (16): 49- 61.
DOI |
|
GAO Wansheng, LIN Hong. Distributionally robust low-carbon optimal scheduling considering flexibility deficiency risk in a distribution network[J]. Power System Protection and Control, 2024, 52 (16): 49- 61.
DOI |
|
| 11 |
OIKONOMOU K, PARVANIA M, KHATAMI R. Deliverable energy flexibility scheduling for active distribution networks[J]. IEEE Transactions on Smart Grid, 2020, 11 (1): 655- 664.
DOI |
| 12 |
徐维炜, 陈红坤, 汤骏, 等. 计及配电网灵活性的峰谷电价分布鲁棒定价策略[J]. 电力自动化设备, 2024, 44 (12): 178- 186.
DOI |
|
XU Weiwei, CHEN Hongkun, TANG Jun, et al. Distributionally robust pricing strategy of peak-valley electricity price[J]. Electric Power Automation Equipment, 2024, 44 (12): 178- 186.
DOI |
|
| 13 |
ANWAR M B, QAZI H W, BURKE D J, et al. Harnessing the flexibility of demand-side resources[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 4151- 4163.
DOI |
| 14 |
HARTWIG K, KOCKAR I. Impact of strategic behavior and ownership of energy storage on provision of flexibility[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 744- 754.
DOI |
| 15 |
温丰瑞, 李华强, 温翔宇, 等. 主动配电网中计及灵活性不足风险的储能优化配置[J]. 电网技术, 2019, 43 (11): 3952- 3962.
DOI |
|
WEN Fengrui, LI Huaqiang, WEN Xiangyu, et al. Optimal allocation of energy storage systems considering flexibility deficiency risk in active distribution network[J]. Power System Technology, 2019, 43 (11): 3952- 3962.
DOI |
|
| 16 |
程杉, 傅桐, 李沣洋, 等. 含高渗透可再生能源的配电网灵活性供需协同规划[J]. 电力系统保护与控制, 2023, 51 (22): 1- 12.
DOI |
|
CHENG Shan, FU Tong, LI Fengyang, et al. Flexible supply demand collaborative planning for distribution networks with high penetration of renewable energy[J]. Power System Protection and Control, 2023, 51 (22): 1- 12.
DOI |
|
| 17 |
WANG C L, LIU C M, CHEN J, et al. Cooperative planning of renewable energy generation and multi-timescale flexible resources in active distribution networks[J]. Applied Energy, 2024, 356, 122429.
DOI |
| 18 | ZHANG J R, FOLEY A, WANG S Y. Optimal planning of a soft open point in a distribution network subject to typhoons[J]. International Journal of Electrical Power & Energy Systems, 2021, 129, 106839. |
| 19 |
LI J K, GE S Y, ZHANG S D, et al. A multi-objective stochastic-information gap decision model for soft open points planning considering power fluctuation and growth uncertainty[J]. Applied Energy, 2022, 317, 119141.
DOI |
| 20 |
JI H R, WANG C S, LI P, et al. Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming[J]. Applied Energy, 2018, 218, 338- 348.
DOI |
| 21 |
CAO W Y, WU J Z, JENKINS N, et al. Benefits analysis of Soft Open Points for electrical distribution network operation[J]. Applied Energy, 2016, 165, 36- 47.
DOI |
| 22 |
PAMSHETTI V B, SINGH S P. Coordinated allocation of BESS and SOP in high PV penetrated distribution network incorporating DR and CVR schemes[J]. IEEE Systems Journal, 2022, 16 (1): 420- 430.
DOI |
| 23 |
DA COSTA L C, THOMÉ F S, GARCIA J D, et al. Reliability-constrained power system expansion planning: A stochastic risk-averse optimization approach[J]. IEEE Transactions on Power Systems, 2021, 36 (1): 97- 106.
DOI |
| 24 |
SABER H, HEIDARABADI H, MOEINI-AGHTAIE M, et al. Expansion planning studies of independent-locally operated battery energy storage systems (BESSs): A CVaR-based study[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2109- 2118.
DOI |
| 25 |
张海波, 胡玉康, 李正荣, 等. 负荷高密度地区中计及灵活性不足风险的储能优化配置[J]. 电网技术, 2023, 47 (12): 4926- 4940.
DOI |
|
ZHANG Haibo, HU Yukang, LI Zhengrong, et al. Optimal configuration of energy storage considering the risk of insufficient flexibility in high load density areas[J]. Power System Technology, 2023, 47 (12): 4926- 4940.
DOI |
|
| 26 |
DE LIMA T D, SOARES J, LEZAMA F, et al. A risk-based planning approach for sustainable distribution systems considering EV charging stations and carbon taxes[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (4): 2294- 2307.
DOI |
| 27 |
MORADIJOZ M, MOGHADDAM M P, HAGHIFAM M R. A flexible active distribution system expansion planning model: a risk-based approach[J]. Energy, 2018, 145, 442- 457.
DOI |
| 28 |
詹勋淞, 管霖, 卓映君, 等. 基于形态学分解的大规模风光并网电力系统多时间尺度灵活性评估[J]. 电网技术, 2019, 43 (11): 3890- 3901.
DOI |
|
ZHAN Xunsong, GUAN Lin, ZHUO Yingjun, et al. Multi-scale flexibility evaluation of large-scale hybrid wind and solar grid-connected power system based on multi-scale morphology[J]. Power System Technology, 2019, 43 (11): 3890- 3901.
DOI |
|
| 29 |
ZHANG L J, XU J W, YANG J H, et al. Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2008, 22 (3): 597- 610.
DOI |
| 30 | VENZKE A, HALILBASIC L, MARKOVIC U, et al. Convex relaxations of chance constrained AC optimal power flow[C]//2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA, IEEE, 2018: 1. |
| 31 |
ROCKAFELLAR R T, URYASEV S. Optimization of conditional value-at-risk[J]. The Journal of Risk, 2000, 2 (3): 21- 41.
DOI |
| 32 |
BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4 (2): 1401- 1407.
DOI |
| [1] | 樊会丛, 段志国, 陈志永, 朱士加, 刘航, 李文霄, 杨阳. 基于多智能体深度策略梯度的离网型微电网双层优化调度[J]. 中国电力, 2025, 58(5): 11-20, 32. |
| [2] | 陈铭宏天, 耿江海, 赵雨泽, 许鹏, 韩雨珊, 张育铭, 张子沫. 基于两阶段随机优化的电氢耦合微电网周运行策略[J]. 中国电力, 2025, 58(5): 82-90. |
| [3] | 王宣元, 张玮, 李长宇, 谢欢, 郭庆来, 王彬, 张宇谦. 考虑随机性的主动配电网有功无功可行域计算方法[J]. 中国电力, 2025, 58(4): 182-192. |
| [4] | 刘雨姗, 陈俊儒, 常喜强, 刘牧阳. 构网型储能变流器并网性能的多层级评价指标体系及应用[J]. 中国电力, 2025, 58(3): 193-203. |
| [5] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
| [6] | 曹书仪, 陶洪铸, 王强, 礼晓飞, 王蕾报, 郭森. 基于混合多属性决策方法的新能源电力系统灵活性资源调节能力综合评价[J]. 中国电力, 2025, 58(11): 62-71, 87. |
| [7] | 王安宁, 范荣奇, 张旸, 刘嘉超, 胡薇, 钟世民, 贾科. 基于多特征量判据的新型配电系统早期故障检测[J]. 中国电力, 2024, 57(9): 181-193. |
| [8] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
| [9] | 莫石, 徐秋实, 卢子敬, 李子寿, 赵红生, 乔立, 罗超. 模糊分割多目标风险框架下电网连锁故障运行风险评估[J]. 中国电力, 2024, 57(2): 41-48. |
| [10] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
| [11] | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122. |
| [12] | 钱国明, 孟杰, 朱海东, 丁泉, 陈孝煜. 基于调频服务的新型光-储电站容量规划及运行策略[J]. 中国电力, 2023, 56(6): 132-138,147. |
| [13] | 王金丽, 李丰胜, 解芳, 张姚, 田野. “双碳”战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56(5): 22-31. |
| [14] | 郑伟民, 但扬清, 王晨轩, 武佳卉, 朱云峰. 计及风-光-水-火多能协同的电网可再生能源消纳能力评估[J]. 中国电力, 2023, 56(12): 248-254. |
| [15] | 艾欣, 徐立敏. 考虑需求侧灵活性资源的区域电能共享市场模型[J]. 中国电力, 2022, 55(6): 53-64. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编