1 |
2023年前三季度光伏发电建设运行情况[EB/OL]. (2023-11-03)[2024-08-20]. https://www.nea.gov.cn/2023-11/03/c_1310748819.htm.
|
2 |
李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55 (11): 149- 154.
|
|
LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-Net[J]. Electric Power, 2022, 55 (11): 149- 154.
|
3 |
刘洁, 林舜江, 梁炜焜, 等. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47 (1): 266- 274.
|
|
LIU Jie, LIN Shunjiang, LIANG Weikun, et al. Short-term probabilistic forecast for power output of photovoltaic station based on high order Markov chain and Gaussian mixture model[J]. Power System Technology, 2023, 47 (1): 266- 274.
|
4 |
林帆, 张耀, 东琦, 等. 基于分位数插值和深度自回归网络的光伏出力概率预测[J]. 电力系统自动化, 2023, 47 (9): 79- 87.
DOI
|
|
LIN Fan, ZHANG Yao, DONG Qi, et al. Probability prediction of photovoltaic output based on quantile interpolation and deep autoregressive network[J]. Automation of Electric Power Systems, 2023, 47 (9): 79- 87.
DOI
|
5 |
赵耀, 高少炜, 李东东, 等. 基于天气相似聚类与QRNN的短期光伏功率区间概率预测[J]. 电力系统自动化, 2023, 47 (23): 152- 161.
DOI
|
|
ZHAO Yao, GAO Shaowei, LI Dongdong, et al. Short-term interval probability prediction of photovoltaic power based on weather similarity clustering and quantile regression neural network[J]. Automation of Electric Power Systems, 2023, 47 (23): 152- 161.
DOI
|
6 |
JIAO X, LI X S, LIN D Y, et al. A graph neural network based deep learning predictor for spatio-temporal group solar irradiance forecasting[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (9): 6142- 6149.
DOI
|
7 |
ZHEN H, NIU D X, WANG K K, et al. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information[J]. Energy, 2021, 231, 120908.
DOI
|
8 |
王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57 (7): 74- 80.
|
|
WANG Haijun, JU Rongrong, DONG Yinghua. Distributed photovoltaic power interval prediction based on spatio-temporal correlation feature and B-LSTM model[J]. Electric Power, 2024, 57 (7): 74- 80.
|
9 |
LIAO W L, BAK-JENSEN B, PILLAI J R, et al. Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach[J]. Electric Power Systems Research, 2022, 211, 108614.
DOI
|
10 |
赵洪山, 孙承妍, 温开云, 等. 无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法[J]. 高电压技术, 2024, 50 (1): 65- 73.
|
|
ZHAO Hongshan, SUN Chengyan, WEN Kaiyun, et al. Ultra-short-term prediction of distributed photovoltaic power method based on AGCRN in the absence of meteorological information[J]. High Voltage Engineering, 2024, 50 (1): 65- 73.
|
11 |
WANG Y Q, FU W J, ZHANG X D, et al. Dynamic directed graph convolution network based ultra-short-term forecasting method of distributed photovoltaic power to enhance the resilience and flexibility of distribution network[J]. IET Generation, Transmission & Distribution, 2024, 18 (2): 337- 352.
|
12 |
ZHU Y, YANG L, YANG X Z, et al. The regional distributed PV ultra-short-term power forecasting based on static-dynamic spatiotemporal correlation modeling[C]//2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG). Wollongong, Australia. IEEE, 2023: 1–6.
|
13 |
马畅. 考虑时空特性的分布式光伏短期概率预测[D]. 北京: 华北电力大学, 2023.
|
|
MA Chang. Short-term probabilistic prediction of distributed photovoltaics considering temporal and spatial characteristics [D]. Beijing: North China Electric Power University, 2023.
|
14 |
官松泽, 唐钰本, 蔡争, 等. 基于Kmeans++-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2023, 44 (12): 170- 174.
|
|
GUAN Songze, TANG Yuben, CAI Zheng, et al. Ultra-short-term forecast of solar irradiance based on Kmeans++-Bi-LSTM[J]. Acta Energiae Solaris Sinica, 2023, 44 (12): 170- 174.
|
15 |
CHEN R F, LIU J M, WANG F, et al. Graph neural network-based wind farm cluster speed prediction[C]//2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS). Jinan, China. IEEE, 2020: 982-987.
|
16 |
苏向敬, 宇海波, 符杨, 等. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56 (11): 10- 19.
|
|
SU Xiangjing, YU Haibo, FU Yang, et al. Probabilistic forecasting of offshore wind power based on dual-stage attentional LSTM and joint quantile loss function[J]. Electric Power, 2023, 56 (11): 10- 19.
|