[1] 林正冲, 戚思睿, 苟吉伟, 等. 新电改形势下集中化大型数据中心战略投资和商业模式[J]. 中国电力, 2021, 54(11): 37–46 LIN Zhengchong, QI Sirui, GOU Jiwei, et al. Strategic investment and business models of large centralized data centers under the new power system reform[J]. Electric Power, 2021, 54(11): 37–46 [2] 陈洪彦, 蒋文新, 郭晓丹. 输变电工程造价分析信息平台建设研究[J]. 工业技术经济, 2016, 35(4): 101–108 CHEN Hongyan, JIANG Wenxin, GUO Xiaodan. Research on the construction of information platform about cost analysis in power transmission and transform project[J]. Journal of Industrial Technological & Economics, 2016, 35(4): 101–108 [3] 何勇萍, 俱鑫, 雍浩, 等. 基于PSO-SVR的输变电工程造价权重预测模型建立及分析[J]. 自动化技术与应用, 2020, 39(3): 98–102 HE Yongping, JU Xin, YONG Hao, et al. Establishment and analysis for weight prediction model of transmission and transformation project cost based on PSO-SVR[J]. Techniques of Automation and Applications, 2020, 39(3): 98–102 [4] NIU Dongxiao, HUA Fuyu, LI Bingjie, et al. Research on neural network prediction of power transmission and transformation project cost based on GA-RBF and PSO-RBF[J]. Applied Mechanics and Materials, 2014, 644-650: 2526–2531. [5] 于波, 肖艳利, 刘尚科, 等. 基于PSO-ELM算法的输变电工程造价预测分析[J]. 信息技术, 2019, 43(4): 148–151, 156 YU Bo, XIAO Yanli, LIU Shangke, et al. Cost prediction model of transmission and transformation engineering based on PSO-ELM algorithm[J]. Information Technology, 2019, 43(4): 148–151, 156 [6] 王宁宁, 王飞, 尹彦涛, 等. 基于支持向量机的变电工程造价预测研究[J]. 建筑经济, 2016, 37(5): 48–52 WANG Ningning, WANG Fei, YIN Yantao, et al. Research on cost predicting of power transformation projects based on SVM[J]. Construction Economy, 2016, 37(5): 48–52 [7] 宋宗耘, 牛东晓, 肖鑫利, 等. 基于改进萤火虫算法优化SVM的变电工程造价预测[J]. 中国电力, 2017, 50(3): 168–173 SONG Zongyun, NIU Dongxiao, XIAO Xinli, et al. Substation engineering cost forecasting method based on modified firefly algorithm and support vector machine[J]. Electric Power, 2017, 50(3): 168–173 [8] 妙旭娟, 刘锦明, 高亮, 等. 基于主成分分析法和神经网络的技改工程造价预测模型[J]. 内蒙古科技与经济, 2019(19): 37–40, 42 MIAO Xujuan, LIU Jinming, GAO Liang, et al. Cost prediction model of technical renovation project based on principal component analysis and neural network[J]. Inner Mongolia Science Technology & Economy, 2019(19): 37–40, 42 [9] 王鑫, 安磊, 张妍. 基于REGR-WNN组合变权模型的输变电工程造价预测[J]. 中国电力企业管理, 2016(13): 93–96 WANG Xin, AN Lei, ZHANG Yan. Cost prediction of power transmission and transformation project based on REGR-WNN combined variable weight model[J]. China Power Enterprise Management, 2016(13): 93–96 [10] 王晓建, 朱婷涵, 劳咏昶, 等. 基于人工免疫优化神经网络的输变电工程造价评估[J]. 浙江电力, 2018, 37(7): 62–67 WANG Xiaojian, ZHU Tinghan, LAO Yongchang, et al. Cost evaluation of power transmission and transformation project based on artificial immune optimization neural network[J]. Zhejiang Electric Power, 2018, 37(7): 62–67 [11] LU Y, NIU D X, QIU J P, et al. Prediction technology of power transmission and transformation project cost based on the decomposition-integration[J]. Mathematical Problems in Engineering, 2015, 2015: 1–11. [12] 郭琦, 付继业, 李珺, 等. 基于BIM的输变电设计与造价信息共享研究[J]. 工程经济, 2016, 26(1): 32–35 GUO Qi, FU Jiye, LI Jun, et al. Research on power transmission design and cost information sharing based on BIM[J]. Engineering Economy, 2016, 26(1): 32–35 [13] ZANG H X, CHENG L L, DING T, et al. Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network[J]. IET Generation, Transmission & Distribution, 2018, 12(20): 4557–4567. [14] 周俊煌, 黄廷城, 谢小瑜, 等. 视频图像智能识别技术在输变电系统中的应用研究综述[J]. 中国电力, 2021, 54(1): 124–134, 166 ZHOU Junhuang, HUANG Tingcheng, XIE Xiaoyu, et al. Review of application research of video image intelligent recognition technology in power transmission and distribution systems[J]. Electric Power, 2021, 54(1): 124–134, 166 [15] 汪际峰, 李鹏, 梁锦照, 等. 电力系统数字化历程与发展趋势[J]. 南方电网技术, 2021, 15(11): 1–8 WANG Jifeng, LI Peng, LIANG Jinzhao, et al. Development history and trends of power system digitalization[J]. Southern Power System Technology, 2021, 15(11): 1–8 [16] 熊一, 詹智红, 柯方超, 等. 基于改进BP神经网络的变电站检修运维成本预测[J]. 电力科学与技术学报, 2021, 36(4): 44–52 XIONG Yi, ZHAN Zhihong, KE Fangchao, et al. Overhaul operation and maintenance cost prediction of substation based on improved BP neural network[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 44–52 [17] XU C C, WANG Y, YE K, et al. Research on transmission line project cost forecast method based on BP neural network[J]. IOP Conference Series:Materials Science and Engineering, 2019, 688(5): 055074. [18] SHI Q Q, XU Q, ZHANG J P. Amended DV-hop scheme based on N-gram model and weighed LM algorithm[J]. Electronics Letters, 2020, 56(5): 247–250. [19] 张宏运, 马震, 乔欢欢. 输变电工程造价管理发展趋势及优化研究[J]. 华东电力, 2012, 40(4): 544–547 ZHANG Hongyun, MA Zhen, QIAO Huanhuan. Cost management development and optimization for power transmission and transformation projects[J]. East China Electric Power, 2012, 40(4): 544–547 [20] 伍也凡, 刘浩田, 肖振锋, 等. 考虑源-网-荷不确定性的增量配电网规划研究综述[J]. 电力系统保护与控制, 2021, 49(8): 177–187 WU Yefan, LIU Haotian, XIAO Zhenfeng, et al. Review of incremental distribution network planning considering the uncertainty of source-network-load[J]. Power System Protection and Control, 2021, 49(8): 177–187 [21] LIU D N, ZHANG X, GAO C C, et al. Cost management system of electric power engineering project based on project management theory[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(2): 975–984. [22] 耿鹏云, 安磊, 王鑫. 基于数据挖掘技术的输电工程造价预测模型的建立与实现[J]. 现代电子技术, 2018, 41(4): 157–160 GENG Pengyun, AN Lei, WANG Xin. Establishment and implementation of power transmission project's cost forecast model based on data mining technology[J]. Modern Electronics Technique, 2018, 41(4): 157–160 [23] 张旭东, 李飞, 刘迪, 等. 基于CNN的产消群需求响应滚动优化策略[J]. 中国电力, 2021, 54(2): 78–89 ZHANG Xudong, LI Fei, LIU Di, et al. CNN-based rolling optimization strategy for prosumer group in demand response[J]. Electric Power, 2021, 54(2): 78–89 [24] 黄小龙. 基于蒙特卡洛法的输变电工程造价风险评估模型研究[J]. 现代电子技术, 2017, 40(20): 178–180 HUANG Xiaolong. Study on Monte-Carlo method based risk assessment model of power transmission project cost[J]. Modern Electronics Technique, 2017, 40(20): 178–180 [25] 郝海风, 朱承治, 彭晶. 基于小样本数据的输变电工程造价估算的建模与仿真[J]. 自动化与仪器仪表, 2019(11): 157–160 HAO Haifeng, ZHU Chengzhi, PENG Jing. Modeling and simulation of cost estimation for transmission and distribution engineering based on small sample data[J]. Automation & Instrumentation, 2019(11): 157–160
|