中国电力 ›› 2023, Vol. 56 ›› Issue (12): 164-173.DOI: 10.11930/j.issn.1004-9649.202302034
• 低碳园区综合能源系统规划与运行关键技术 • 上一篇 下一篇
薛溟枫1(), 毛晓波1, 肖浩2(
), 周毅斌2, 浦骁威2, 裴玮2
收稿日期:
2023-02-09
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
薛溟枫(1976—),男,工程师,从事需求侧管理、有序用电、综合能源服务研究,E-mail: mfxue@js.sgcc.com.cn基金资助:
Mingfeng XUE1(), Xiaobo MAO1, Hao XIAO2(
), Yibin ZHOU2, Xiaowei PU2, Wei PEI2
Received:
2023-02-09
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
针对现有多主体综合能源微网群协同运行中,集中式优化面临的主体隐私保护、参数难以共享问题,以及分布式优化面临的优化模型须大量简化近似、全局最优性难以保障的问题,提出了一种基于联邦学习的多主体综合能源微网群协调优化运行方法,以兼顾主体隐私性与全局最优性。首先,基于循环门控单元(gated recurrent unit,GRU)深度学习网络构建各综合能源微网的等值互动特性封装模型并上传至云端;其次,在不侵入各微网内部隐私数据的基础上,将各微网等效模型加密后于云端汇总并进行联邦学习;然后,依据云端联邦学习的结果对边端各综合能源微网互动特性封装模型进行修正和更新,迭代直至损失函数收敛,进而实现隐私保护下综合能源微网群的全局协同优化运行;最后,通过典型的综合能源微网群仿真算例验证了所提方法的可行性和有效性,结果表明,所提方法能实现综合能源微网群的快速高效优化运行,并有效保护各参与方的数据隐私。
中图分类号:
薛溟枫, 毛晓波, 肖浩, 周毅斌, 浦骁威, 裴玮. 基于联邦学习的综合能源微网群协同优化运行方法[J]. 中国电力, 2023, 56(12): 164-173.
Mingfeng XUE, Xiaobo MAO, Hao XIAO, Yibin ZHOU, Xiaowei PU, Wei PEI. Cooperative Operation Optimization for Integrated Energy Microgrid Groups Based on Federated Learning[J]. Electric Power, 2023, 56(12): 164-173.
微网 | 设备参数/kW | |||||||||
风电 | 光伏 | 燃气轮机 | 储能 | 燃气锅炉 | ||||||
1 | 280 | 240 | 200 | 200 | ||||||
2 | 400 | 200 | 300 | |||||||
3 | 360 | 300 | 400 |
表 1 各综合能源微网技术参数
Table 1 Basic parameters of each integrated energy microgrid
微网 | 设备参数/kW | |||||||||
风电 | 光伏 | 燃气轮机 | 储能 | 燃气锅炉 | ||||||
1 | 280 | 240 | 200 | 200 | ||||||
2 | 400 | 200 | 300 | |||||||
3 | 360 | 300 | 400 |
案例 | 运行成本/元 | |||||||
微网1 | 微网2 | 微网3 | 总计 | |||||
1 | 290.9 | 942.0 | 2 036.9 | 3 269.9 | ||||
2 | 43.3 | 571.4 | 1 784.6 | 2 399.3 | ||||
3 | 63.3 | 626.9 | 1 796.4 | 2 486.6 |
表 2 不同案例下的运行成本对比
Table 2 Comparison of operating costs in different cases
案例 | 运行成本/元 | |||||||
微网1 | 微网2 | 微网3 | 总计 | |||||
1 | 290.9 | 942.0 | 2 036.9 | 3 269.9 | ||||
2 | 43.3 | 571.4 | 1 784.6 | 2 399.3 | ||||
3 | 63.3 | 626.9 | 1 796.4 | 2 486.6 |
案例 | 平均总运行费用/元 | 平均求解时间/s | ||
2 | 2 239.4 | 1.877 | ||
3 | 2 326.0 | 0.145 |
表 3 不同案例的计算时间对比
Table 3 Comparison of calculation time of different cases
案例 | 平均总运行费用/元 | 平均求解时间/s | ||
2 | 2 239.4 | 1.877 | ||
3 | 2 326.0 | 0.145 |
1 | 屈小云, 吴鸣, 李奇, 等. 多能互补综合能源系统综合评价研究进展综述[J]. 中国电力, 2021, 54 (11): 153- 163. |
QU Xiaoyun, WU Ming, LI Qi, et al. Review on comprehensive evaluation of multi-energy complementary integrated energy systems[J]. Electric Power, 2021, 54 (11): 153- 163. | |
2 | 孔力, 裴玮, 饶建业, 等. 建设新型电力系统促进实现碳中和[J]. 中国科学院院刊, 2022, 37 (4): 522- 528. |
KONG Li, PEI Wei, RAO Jianye, et al. Build new power system to promote carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 522- 528. | |
3 |
CHEN L, XU Q S, YANG Y B, et al. Community integrated energy system trading: a comprehensive review[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (6): 1445- 1458.
DOI |
4 | 杨挺, 赵黎媛, 王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019, 43 (1): 2- 14. |
YANG Ting, ZHAO Liyuan, WANG Chengshan. Review on application of artificial intelligence in power system and integrated energy system[J]. Automation of Electric Power Systems, 2019, 43 (1): 2- 14. | |
5 |
肖浩, 裴玮, 孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化, 2016, 40 (18): 7- 14, 55.
DOI |
XIAO Hao, PEI Wei, KONG Li. Multi-time scale coordinated optimal dispatch of microgrid based on model predictive control[J]. Automation of Electric Power Systems, 2016, 40 (18): 7- 14, 55.
DOI |
|
6 |
陈健, 张维桐, 张逸成, 等. 考虑不同空调负荷特性的微网双层优化调度[J]. 电网技术, 2018, 42 (5): 1424- 1431.
DOI |
CHEN Jian, ZHANG Weitong, ZHANG Yicheng, et al. Bi-level optimal dispatch of microgrid considering different air-conditioning load characteristics[J]. Power System Technology, 2018, 42 (5): 1424- 1431.
DOI |
|
7 | 郭宴秀, 苏建军, 刘洋, 等. 考虑电热交互和共享储能的多综合能源系统运行优化[J]. 中国电力, 2023, 56 (4): 138- 145. |
GUO Yanxiu, SU Jianjun, LIU Yang, et al. Optimal operation of multiple integrated energy systems considering power and heat interaction and shared energy storage system[J]. Electric Power, 2023, 56 (4): 138- 145. | |
8 |
张程, 匡宇, 刘佳静, 等. 考虑需求侧管理的风光燃储微网两阶段优化调度[J]. 电力系统保护与控制, 2022, 50 (24): 13- 22.
DOI |
ZHANG Cheng, KUANG Yu, LIU Jiajing, et al. Two-stage optimal scheduling of a wind, photovoltaic, gas turbine, fuel cell and storage energy microgrid considering demand-side management[J]. Power System Protection and Control, 2022, 50 (24): 13- 22.
DOI |
|
9 |
刘显茁, 王皓怀, 田伟达, 等. 基于多源协同的区域分层能源综合调度优化[J]. 智慧电力, 2022, 50 (9): 53- 58.
DOI |
LIU Xianzhuo, WANG Haohuai, TIAN Weida, et al. Comprehensive scheduling optimization of regional hierarchical energy based on multi-source coordination[J]. Smart Power, 2022, 50 (9): 53- 58.
DOI |
|
10 | 周丽红, 于浩, 李鹏. 考虑居民热负荷主动需求响应的园区综合能源系统分布式优化运行方法[J]. 电网技术, 2023, 47 (5): 1989- 1997. |
ZHOU Lihong, YU Hao, LI Peng. Distributed optimal operation method of park-level integrated energy system considering active demand response of residential heat loads[J]. Power System Technology, 2023, 47 (5): 1989- 1997. | |
11 |
LEI Y K, TANG Q, LI T, et al. A multi-individual distributed modeling and optimization method for integrated energy systems with complex composition[J]. IEEE Access, 2020, 8, 136198- 136205.
DOI |
12 | 周鑫, 韩肖清, 李廷钧, 等. 计及需求响应和电能交互的多主体综合能源系统主从博弈优化调度策略[J]. 电网技术, 2022, 46 (9): 3333- 3344. |
ZHOU Xin, HAN Xiaoqing, LI Tingjun, et al. Master-slave game optimal scheduling strategy for multi-agent integrated energy system based on demand response and power interaction[J]. Power System Technology, 2022, 46 (9): 3333- 3344. | |
13 | 姚文亮, 王成福, 赵雨菲, 等. 不确定性环境下基于合作博弈的综合能源系统分布式优化[J]. 电力系统自动化, 2022, 46 (20): 43- 53. |
YAO Wenliang, WANG Chengfu, ZHAO Yufei, et al. Distributed optimization of integrated energy system based on cooperative game in uncertain environment[J]. Automation of Electric Power Systems, 2022, 46 (20): 43- 53. | |
14 |
GAO S H, XIANG C, YU M, et al. Online optimal power scheduling of a microgrid via imitation learning[J]. IEEE Transactions on Smart Grid, 2022, 13 (2): 861- 876.
DOI |
15 |
朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41 (23): 7905- 7923.
DOI |
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41 (23): 7905- 7923.
DOI |
|
16 |
乔骥, 王新迎, 张擎, 等. 基于柔性行动器–评判器深度强化学习的电–气综合能源系统优化调度[J]. 中国电机工程学报, 2021, 41 (3): 819- 833.
DOI |
QIAO Ji, WANG Xinying, ZHANG Qing, et al. Optimal dispatch of integrated electricity-gas system with soft actor-critic deep reinforcement learning[J]. Proceedings of the CSEE, 2021, 41 (3): 819- 833.
DOI |
|
17 |
杨挺, 赵黎媛, 刘亚闯, 等. 基于深度强化学习的综合能源系统动态经济调度[J]. 电力系统自动化, 2021, 45 (5): 39- 47.
DOI |
YANG Ting, ZHAO Liyuan, LIU Yachuang, et al. Dynamic economic dispatch for integrated energy system based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45 (5): 39- 47.
DOI |
|
18 |
DU Y, LI F X. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11 (2): 1066- 1076.
DOI |
19 |
ZHANG Q Z, DEHGHANPOUR K, WANG Z Y, et al. Multi-agent safe policy learning for power management of networked microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12 (2): 1048- 1062.
DOI |
20 |
LEE S, CHOI D H. Federated reinforcement learning for energy management of multiple smart homes with distributed energy resources[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (1): 488- 497.
DOI |
21 | 陈明昊, 孙毅, 胡亚杰, 等. 基于纵向联邦强化学习的居民社区综合能源系统协同训练与优化管理方法[J]. 中国电机工程学报, 2022, 42 (15): 5535- 5550. |
CHEN Minghao, SUN Yi, HU Yajie, et al. The collaborative training and management-optimized method for residential Integrated energy system based on vertical federated reinforcement learning[J]. Proceedings of the CSEE, 2022, 42 (15): 5535- 5550. | |
22 |
XIAO H, PEI W, WU L, et al. A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information[J]. Applied Energy, 2023, 335, 120716.
DOI |
23 |
李彦君, 裴玮, 肖浩, 等. 基于深度学习的微网需求响应特性封装与配电网优化运行[J]. 电力系统自动化, 2021, 45 (10): 157- 165.
DOI |
LI Yanjun, PEI Wei, XIAO Hao, et al. Deep learning based characteristic packaging of demand response for microgrids and optimal operation of distribution network[J]. Automation of Electric Power Systems, 2021, 45 (10): 157- 165.
DOI |
|
24 | 杨楠, 周峥, 陈道君, 等. 基于非参数核密度估计的风功率波动性概率密度建模方法[J]. 太阳能学报, 2019, 48 (7): 2028- 2035. |
YANG Nan, ZHOU Zheng, CHEN Daojun, et al. Research of modeling method based on non-parametric kernel density estimation of probability of wind power fluctuations[J]. Acta Energiae Solaris Sinica, 2019, 48 (7): 2028- 2035. | |
25 |
XIAO H, PEI W, DONG Z M, et al. Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel[J]. CSEE Journal of Power and Energy Systems, 2018, 4 (2): 155- 167.
DOI |
26 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 10(2): 1–19. |
27 | ZHANG Y F, ZHU H. Additively homomorphical encryption based deep neural network for asymmetrically collaborative machine learning[EB/OL]. 2020: arXiv: 2007.06849.https://arxiv.org/abs/2007.06849.pdf. |
28 | ZHANG Q, WANG C, WU H Y, et al. GELU-net: a globally encrypted, locally unencrypted deep neural network for privacy-preserved learning[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3933–3939. |
[1] | 高志远, 庄卫金, 李峰, 于芳, 张鸿, 王艳, 夏旻. 调控领域人工智能应用的高复用性验证平台[J]. 中国电力, 2025, 58(3): 142-150. |
[2] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[3] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
[4] | 胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175. |
[5] | 罗萍萍, 盛奥, 林济铿, 王忠岳, 李启本, 周平. 基于CGAN台风气象下负荷场景生成[J]. 中国电力, 2025, 58(2): 176-185. |
[6] | 黄堃, 付明, 翟家祥, 华昊辰. 基于改进线性化ADMM的多微网经济运行分布式协调优化[J]. 中国电力, 2025, 58(2): 193-202. |
[7] | 陆海, 张浩, 陈晓云, 周苏洋. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99. |
[8] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[9] | 李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152. |
[10] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[11] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[12] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[13] | 景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213. |
[14] | 苏娟, 李拓, 刘峻玮, 夏越, 杜松怀. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J]. 中国电力, 2024, 57(6): 53-68. |
[15] | 陈兴龙, 曹喜民, 陈洁, 刘俊, 张育超, 包洪印. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||