中国电力 ›› 2023, Vol. 56 ›› Issue (10): 80-95.DOI: 10.11930/j.issn.1004-9649.202303073
• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇 下一篇
收稿日期:
2023-03-16
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
王磊(1986—),男,博士研究生,从事风电机组、风电叶片故障诊断研究,E-mail: hais1998@163.com基金资助:
Lei WANG(), Yibing LIU, Wei TENG(
), Xinwei HUANG, Jiantao LIU
Received:
2023-03-16
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
风电机组叶片在运行时除了承受气动力作用外,还承受重力、离心力等其他力的影响,再加上雨雪、沙尘、盐雾侵蚀、雷击等破坏,使叶片基体及表面容易受到损伤,这些损伤如未及时发现与维修会导致风电机组发电效率下降、停机,甚至发生损毁等事故。因此,风电机组叶片损伤检测对保障风电机组安全高效运行、降低风电机组寿命周期内发电成本有重大意义。结合国内外相关文献,综述了风电机组叶片损伤类型及产生原因,对现有风电机组叶片损伤检测技术进行了系统介绍,对这些技术进行了实时在线监测与非实时检测分类,对比了各监测/检测技术的优缺点。最后根据风电机组的实际工程应用及无损检测技术的发展,提出了风电机组叶片无损监测/检测技术未来发展趋势。
王磊, 柳亦兵, 滕伟, 黄心伟, 刘剑韬. 风电机组叶片无损检测技术研究与进展[J]. 中国电力, 2023, 56(10): 80-95.
Lei WANG, Yibing LIU, Wei TENG, Xinwei HUANG, Jiantao LIU. Research and Development of Nondestructive Detection Technology for Wind Turbine Blades[J]. Electric Power, 2023, 56(10): 80-95.
监测方法 | 优点 | 缺点 | 损伤识别 | 损伤评估 | 损伤定位 | |||||
应变监测 | 可以进行早期微小损伤监测 可以监测内部损伤(FGB) 受外部环境干扰小(FGB) 长距离传输信号衰减小FGB) | 为接触式监测需把传感器粘贴在叶片表面或嵌入到叶片内部 需要提前预判风电叶片的高应变区域 应变片传感器数量大走线复杂 应变片传感器长时间使用会蠕变退化 FGB传感器需要嵌入叶片内部加了叶片制造难度 | 是 | 是 | 是 | |||||
振动监测 | 应用广泛技术成熟 传感器安装方便 振动信号处理技术成熟多样 | 对前期微小损伤不敏感 外界环境对振动信号影响大 损伤特征提取困难 需要传感器数量较多 | 是 | 可能 | 可能 | |||||
声发射监测 | 对早期微小裂纹损伤敏感 能持续监测损伤扩展 不需要外部激励主动监测 | 信号受环境干扰大难以提取有效信号 需要紧贴叶片安装以提高监测精度 需提前判定损伤可能发生出 需要多个声发射传感器,走线复杂 | 是 | 是 | 是 | |||||
噪声监测 | 传感器安装方便成本低 对早期损伤敏感 麦克风阵列监测可以进行损伤定位 | 噪声信号受环境影响较大 信号采样率高数据处理难度大 对于持续的损伤监测不敏感 | 是 | 可能 | 可能 | |||||
SCADA数据 监测 | 不需要额外增加传感器成本低 数据处理算法丰富 | 数据量庞大,提取有效数据困难 对早期损伤不敏感,事后预警 | 是 | 否 | 否 | |||||
基于数据融合的损伤监测 | 提高损伤检测的准确性 监测范围广,可以检测叶片表面及内部损伤 降低误报率 | 数据处理负载度高 算法优化难度大 | 是 | 是 | 是 |
表 1 风电叶片实时在线无损监测技术优缺点对比
Table 1 Comparison of real-time on-line non-destructive monitoring technologies for wind turbine blades
监测方法 | 优点 | 缺点 | 损伤识别 | 损伤评估 | 损伤定位 | |||||
应变监测 | 可以进行早期微小损伤监测 可以监测内部损伤(FGB) 受外部环境干扰小(FGB) 长距离传输信号衰减小FGB) | 为接触式监测需把传感器粘贴在叶片表面或嵌入到叶片内部 需要提前预判风电叶片的高应变区域 应变片传感器数量大走线复杂 应变片传感器长时间使用会蠕变退化 FGB传感器需要嵌入叶片内部加了叶片制造难度 | 是 | 是 | 是 | |||||
振动监测 | 应用广泛技术成熟 传感器安装方便 振动信号处理技术成熟多样 | 对前期微小损伤不敏感 外界环境对振动信号影响大 损伤特征提取困难 需要传感器数量较多 | 是 | 可能 | 可能 | |||||
声发射监测 | 对早期微小裂纹损伤敏感 能持续监测损伤扩展 不需要外部激励主动监测 | 信号受环境干扰大难以提取有效信号 需要紧贴叶片安装以提高监测精度 需提前判定损伤可能发生出 需要多个声发射传感器,走线复杂 | 是 | 是 | 是 | |||||
噪声监测 | 传感器安装方便成本低 对早期损伤敏感 麦克风阵列监测可以进行损伤定位 | 噪声信号受环境影响较大 信号采样率高数据处理难度大 对于持续的损伤监测不敏感 | 是 | 可能 | 可能 | |||||
SCADA数据 监测 | 不需要额外增加传感器成本低 数据处理算法丰富 | 数据量庞大,提取有效数据困难 对早期损伤不敏感,事后预警 | 是 | 否 | 否 | |||||
基于数据融合的损伤监测 | 提高损伤检测的准确性 监测范围广,可以检测叶片表面及内部损伤 降低误报率 | 数据处理负载度高 算法优化难度大 | 是 | 是 | 是 |
检测方法 | 优点 | 缺点 | 损伤 识别 | 损伤 评估 | 损伤 定位 | |||||
红外热成像检测 | 可快速对风电叶片进行大面积损伤检测 可对风电叶片内部损伤进行检测 在无人机的配合下检测方便灵活 | 受外部环境如温度、湿度影响较大 需要增加额外的热源 需要进行大量的图像处理 对早期微小损伤不敏感 | 是 | 是 | 是 | |||||
机器视觉检测 | 方便高效可快速对风电叶片表面进行检测 图像处理算法多可以进行实时图像处理 | 只能对风电叶片表面损伤进行检测 受环境天气等因素影响大 图像处理需要进行大量运算 需要无人机进行紧密配合 | 是 | 是 | 是 |
表 2 风电叶片非实时损伤检测技术对比
Table 2 Comparison of non-real-time damage detection techniques for wind turbine blades
检测方法 | 优点 | 缺点 | 损伤 识别 | 损伤 评估 | 损伤 定位 | |||||
红外热成像检测 | 可快速对风电叶片进行大面积损伤检测 可对风电叶片内部损伤进行检测 在无人机的配合下检测方便灵活 | 受外部环境如温度、湿度影响较大 需要增加额外的热源 需要进行大量的图像处理 对早期微小损伤不敏感 | 是 | 是 | 是 | |||||
机器视觉检测 | 方便高效可快速对风电叶片表面进行检测 图像处理算法多可以进行实时图像处理 | 只能对风电叶片表面损伤进行检测 受环境天气等因素影响大 图像处理需要进行大量运算 需要无人机进行紧密配合 | 是 | 是 | 是 |
1 | GWEC. Global wind report 2022[R]. GWEC, 2022. |
2 | 许经纬. 碳纤维/玻璃纤维混杂增强复合材料力学性能研究及风电叶片应用[D]. 苏州: 苏州大学, 2019: 4–5. |
XU Jingwei. Study on mechanical properties of carbon fiber/glass fiber hybrid reinforced composites and application of wind turbine blades[D]. Suzhou: Soochow University, 2019: 4–5. | |
3 | 李亚娟. 风电叶片分层缺陷演化的力学行为及声发射响应特性研究[D]. 保定: 河北大学, 2015: 8–9. |
LI Yajuan. Study on mechanical behavior and acoustic emission response characteristics of delamination defect evolution of wind turbine blades[D]. Baoding: Hebei University, 2015: 8–9. | |
4 |
HABIBI H, CHENG L, ZHENG H T, et al. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy, 2015, 83, 859- 870.
DOI |
5 |
ZHAO Q, YUAN Y P, SUN W L, et al. Reliability analysis of wind turbine blades based on non-Gaussian wind load impact competition failure model[J]. Measurement, 2020, 164, 107950.
DOI |
6 | CHEN X F, YAN R Q, LIU Y M. Wind turbine condition monitoring and fault diagnosis in China[J]. IEEE Instrumentation & Measurement Magazine, 2016, 19 (2): 22- 28. |
7 |
SEYR H, MUSKULUS M. Decision support models for operations and maintenance for offshore wind farms: a review[J]. Applied Sciences, 2019, 9 (2): 278.
DOI |
8 |
赵元星, 汪建文, 张立茹, 等. 气动力和离心力对风力机叶片应力影响研究[J]. 太阳能学报, 2021, 42 (2): 225- 232.
DOI |
ZHAO Yuanxing, WANG Jianwen, ZHANG Liru, et al. Research on influence of aerodynamic load and centrifugal load on wind-turbine-blade stress[J]. Acta Energiae Solaris Sinica, 2021, 42 (2): 225- 232.
DOI |
|
9 | 国防科学技术委员会. GJB1038.1A—2004:纤维增强复合材料无损检验方法第一部分超声波检验[S]. 北京: 中国标准出版社, 2004. |
10 | 国防科学技术委员会. GJB1038.2A—2004:纤维增强复合材料无损检验方法第二部分X射线照相检验[S]. 北京: 中国标准出版社, 2004. |
11 | 中华人民共和国航天工业部.QJ 1274—1987:玻璃钢层压板超声波检测方法[S]. |
12 | 中华人民共和国航天工业部. QJ 2914—1997:复合材料结构声发射检测方法[S]. |
13 | 美国材料与试验协会. ASTM E1495/E1495M-2012:复合材料层压板和胶接接超声检测标准指南[S]. |
14 | 美国材料与试验协会. ASTM E1888/E1888M-2007:带巴沙(Balsa)木芯的玻璃纤维增强塑料压力容器的声发射检验的标准规程[S]. |
15 | 中国可再生能源学会风能专业委员会. 2012年全国风电设备运行质量调查概述[J]. 风能, 2013(9): 36–44. |
The Wind Energy Professional Committee of the Chinese Renewable Energy Society. Overview of the 2012 national wind power equipment operation quality survey [J]. Wind Energy, 2013 (9): 36–44. | |
16 | 乌建中. 风电叶片全尺寸结构测试理论基础、系统设计和试验方法[M]. 上海: 同济大学出版社, 2021: 1. |
17 |
李德源, 叶枝全, 陈严, 等. 风力机叶片载荷谱及疲劳寿命分析[J]. 工程力学, 2004, 21 (6): 118- 123.
DOI |
LI Deyuan, YE Zhiquan, CHEN Yan, et al. Load spectrum and fatigue life analysis of the blade of horizontal axis wind turbine[J]. Engineering Mechanics, 2004, 21 (6): 118- 123.
DOI |
|
18 |
周伟, 张洪波, 马力辉, 等. 风电叶片复合材料结构缺陷无损检测研究进展[J]. 塑料科技, 2010, 38 (12): 84- 86.
DOI |
ZHOU Wei, ZHANG Hongbo, MA Lihui, et al. Advances in non-destructive testing of structures defects for wind turbine blade composite material[J]. Plastics Science and Technology, 2010, 38 (12): 84- 86.
DOI |
|
19 |
NAGLE A J, DELANEY E L, BANK L C, et al. A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades[J]. Journal of Cleaner Production, 2020, 277, 123321.
DOI |
20 |
KURBATOVA A S, BASHKIN V N. Urban landscapes and streaming structures as a basis of urban construction planning[J]. Management of Environmental Quality:an International Journal, 2006, 17 (2): 184- 196.
DOI |
21 |
AL KATSAPRAKAKIS D, PAPADAKIS N, NTINTAKIS I. A comprehensive analysis of wind turbine blade damage[J]. Energies, 2021, 14 (18): 5974.
DOI |
22 | Defect types and mechanism of wind turbine blades[EB/OL]. (2022-09-28)[2022-11-15]. https://encyclopedia.pub/entry/27751. |
23 | 风机叶片在台风中结构破坏的分析_全球新能源网[EB/OL]. (2006-05-22)[2022-11-15].https://www.xny365.com/news/article-125468-4.html. |
24 |
HASELBACH P U, BITSCHE R D, BRANNER K. The effect of delaminations on local buckling in wind turbine blades[J]. Renewable Energy, 2016, 85, 295- 305.
DOI |
25 |
ZHOU H F, DOU H Y, QIN L Z, et al. A review of full-scale structural testing of wind turbine blades[J]. Renewable and Sustainable Energy Reviews, 2014, 33, 177- 187.
DOI |
26 |
AL-KHUDAIRI O, HADAVINIA H, LITTLE C, et al. Full-scale fatigue testing of a wind turbine blade in flapwise direction and examining the effect of crack propagation on the blade performance[J]. Materials, 2017, 10 (10): 1152.
DOI |
27 | 白学宗, 安宗文, 侯运丰, 等. 低速冲击载荷下的风电叶片刚度退化规律[J]. 太阳能学报, 2022, 43 (1): 132- 139. |
BAI Xuezong, AN Zongwen, HOU Yunfeng, et al. Stiffness degradation rule of wind turbine blade under low-velocity impact load[J]. Acta Energiae Solaris Sinica, 2022, 43 (1): 132- 139. | |
28 |
RAVIKUMAR K, SUBBIAH R, RANGANATHAN N, et al. A review on fatigue damages in the wind turbines: challenges in determining and reducing fatigue failures in wind turbine blades[J]. Wind Engineering, 2020, 44 (4): 434- 451.
DOI |
29 | 江苏省风力发电机叶片分析鉴定[EB/OL]. (2012-09-17)[2022-11-15]. http://falab.com.cn/case-3/100.html. |
30 |
AMIRZADEH B, LOUHGHALAM A, RAESSI M, et al. A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: stochastic rain texture model and drop impact simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 163, 33- 43.
DOI |
31 |
HU W F, CHEN W Y, WANG X B, et al. A computational framework for coating fatigue analysis of wind turbine blades due to rain erosion[J]. Renewable Energy, 2021, 170, 236- 250.
DOI |
32 |
KAORE A N, KALE U B, YERRAMALLI C S, et al. Turbine specific fatigue life prediction model for wind turbine blade coatings subjected to rain erosion[J]. Materials Today Communications, 2022, 31, 103487.
DOI |
33 |
PUGH K, NASH J W, REABURN G, et al. On analytical tools for assessing the raindrop erosion of wind turbine blades[J]. Renewable and Sustainable Energy Reviews, 2021, 137, 110611.
DOI |
34 |
HERRING R, DYER K, MARTIN F, et al. The increasing importance of leading edge erosion and a review of existing protection solutions[J]. Renewable and Sustainable Energy Reviews, 2019, 115, 109382.
DOI |
35 |
EISENBERG D, LAUSTSEN S, STEGE J. Wind turbine blade coating leading edge rain erosion model: development and validation[J]. Wind Energy, 2018, 21 (10): 942- 951.
DOI |
36 |
WANG Y, ZHUPANSKA O I. Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades[J]. Composite Structures, 2015, 132, 1182- 1191.
DOI |
37 | CANDELA GAROLERA A, MADSEN S F, NISSIM M, et al. Lightning damage to wind turbine blades from wind farms in the U.S.[J]. IEEE Transactions on Power Delivery, 2014, 31 (3): 1043- 1049. |
38 |
ALSABAGH A S Y, TIU W, XU Y G, et al. A review of the effects of ice accretion on the structural behavior of wind turbines[J]. Wind Engineering, 2013, 37 (1): 59- 70.
DOI |
39 |
IBRAHIM G M, POPE K, MUZYCHKA Y S. Effects of blade design on ice accretion for horizontal axis wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173, 39- 52.
DOI |
40 | Work Package 1: Icing[EB/OL]. (2019-07-23)[2022-11-15]. http://www.icewind.dtu.dk/section/wp_1. |
41 |
刘文斌, 李时华. 某风电场机组叶片断裂原因分析[J]. 风能, 2019, (1): 88- 92.
DOI |
LIU Wenbin, LI Shihua. Cause analysis of blade fracture of a wind farm unit[J]. Wind Energy, 2019, (1): 88- 92.
DOI |
|
42 |
SIERRA-PÉREZ J, TORRES-ARREDONDO M A, GÜEMES A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison[J]. Composite Structures, 2016, 135, 156- 166.
DOI |
43 | YE X W, SU Y H, HAN J P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review[J]. The Scientific World Journal, 2014, 2014: 652329. |
44 |
BOSE A K, ZHANG X Z, MADDIPATLA D, et al. Screen-printed strain gauge for micro-strain detection applications[J]. IEEE Sensors Journal, 2020, 20 (21): 12652- 12660.
DOI |
45 | 深圳市勤联科技有限公司. 应变片, 共和应变片, 日本kyowa应变片, 昭和应变片, showa应变片, 应变片的原理, 种类, 结构, 应变片知识 [EB/OL]. (2021-10-10)[2022-11-15]. http://www.santektech.com/jjfa1/newsId=58.html. |
46 |
LIU Z, LI Y J, ZHANG N, et al. Reliability analysis of CFRP-packaged FBG sensors using FMEA and FTA techniques[J]. Applied Sciences, 2021, 11 (22): 10859.
DOI |
47 |
HSU T Y, SHIAO S Y, LIAO W I. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors[J]. Measurement Science and Technology, 2018, 29 (1): 015108.
DOI |
48 |
徐小强, 杜阳, 冒燕, 等. 光纤布拉格光栅柔性传感器研究进展[J]. 应用光学, 2021, 42 (5): 932- 940.
DOI |
XU Xiaoqiang, DU Yang, MAO Yan, et al. Research progress of flexible sensor of fiber Bragg grating[J]. Journal of Applied Optics, 2021, 42 (5): 932- 940.
DOI |
|
49 | 张照辉. 基于光纤传感技术的风力发电机结构状态评估方法[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
ZHANG Zhaohui. Structural state evaluation method of wind turbine based on optical fiber sensing technology[D]. Harbin: Harbin Institute of Technology, 2020. | |
50 |
LIU Z, LIU X, ZHU S P, et al. Reliability assessment of measurement accuracy for FBG sensors used in structural tests of the wind turbine blades based on strain transfer laws[J]. Engineering Failure Analysis, 2020, 112, 104506.
DOI |
51 |
WEN B R, TIAN X L, JIANG Z H, et al. Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: a feasibility study[J]. Marine Structures, 2020, 71, 102729.
DOI |
52 |
DOLIŃSKI L, KRAWCZUK M. Damage detection in turbine wind blades by vibration based methods[J]. Journal of Physics: Conference Series, 2009, 181, 012086.
DOI |
53 |
LOSS T, BERGMANN A. Vibration-based fingerprint algorithm for structural health monitoring of wind turbine blades[J]. Applied Sciences, 2021, 11 (9): 4294.
DOI |
54 |
OCHIENG F X, HANCOCK C M, ROBERTS G W, et al. A review of ground-based radar as a noncontact sensor for structural health monitoring of in-field wind turbines blades[J]. Wind Energy, 2018, 21 (12): 1435- 1449.
DOI |
55 |
DILEK A U, OGUZ A D, SATIS F, et al. Condition monitoring of wind turbine blades and tower via an automated laser scanning system[J]. Engineering Structures, 2019, 189, 25- 34.
DOI |
56 |
HELMING P, VON FREYBERG A, SORG M, et al. Wind turbine tower deformation measurement using terrestrial laser scanning on a 3.4 MW wind turbine[J]. Energies, 2021, 14 (11): 3255.
DOI |
57 |
MARKS R, GILLAM C, CLARKE A, et al. Damage detection in a composite wind turbine blade using 3D scanning laser vibrometry[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 231 (16): 3024- 3041.
DOI |
58 |
DI LORENZO E, PETRONE G, MANZATO S, et al. Damage detection in wind turbine blades by using operational modal analysis[J]. Structural Health Monitoring, 2016, 15 (3): 289- 301.
DOI |
59 |
PACHECO-CHÉRREZ J, PROBST O. Vibration-based damage detection in a wind turbine blade through operational modal analysis under wind excitation[J]. Materials Today:Proceedings, 2022, 56, 291- 297.
DOI |
60 |
TCHERNIAK D, MØLGAARD L L. Active vibration-based structural health monitoring system for wind turbine blade: demonstration on an operating Vestas V27 wind turbine[J]. Structural Health Monitoring:an International Journal, 2017, 16 (5): 536- 550.
DOI |
61 | 顾永强, 冯锦飞, 张哲玮, 等. 基于模态参数的在役风力发电机叶片损伤识别研究[J]. 太阳能学报, 2022, 43 (3): 350- 355. |
GU Yongqiang, FENG Jinfei, ZHANG Zhewei, et al. Research on blade damage identification of active wind turbine based on modal parameters[J]. Acta Energiae Solaris Sinica, 2022, 43 (3): 350- 355. | |
62 |
张则荣, 韩桐桐, 李影. 基于应变模态的风机叶片损伤诊断研究[J]. 可再生能源, 2021, 39 (3): 359- 364.
DOI |
ZHANG Zerong, HAN Tongtong, LI Ying. Damage identification of wind turbine blade based on strain mode analysis[J]. Renewable Energy Resources, 2021, 39 (3): 359- 364.
DOI |
|
63 |
WANG W J, XUE Y, HE C K, et al. Review of the typical damage and damage-detection methods of large wind turbine blades[J]. Energies, 2022, 15 (15): 5672.
DOI |
64 |
GÓMEZ MUÑOZ C, GARCÍA MÁRQUEZ F. A new fault location approach for acoustic emission techniques in wind turbines[J]. Energies, 2016, 9 (1): 40.
DOI |
65 |
HE Y Z, LI M C, MENG Z Q, et al. An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems[J]. Mechanical Systems and Signal Processing, 2021, 148, 107146.
DOI |
66 |
FU Z X, LUO Y, GU C H, et al. Reliability analysis of condition monitoring network of wind turbine blade based on wireless sensor networks[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (2): 549- 557.
DOI |
67 |
ZHAO Z M, CHEN N Z. Acoustic emission based damage source localization for structural digital twin of wind turbine blades[J]. Ocean Engineering, 2022, 265, 112552.
DOI |
68 | MOTAMED P K, ABEDIAN A, NASIRI M. Optimal sensors layout design based on reference-free damage localization with lamb wave propagation[J]. Structural Control and Health Monitoring, 2020, 27 (4): 32. |
69 |
GIRIDHARA G, RATHOD V T, NAIK S, et al. Rapid localization of damage using a circular sensor array and Lamb wave based triangulation[J]. Mechanical Systems and Signal Processing, 2010, 24 (8): 2929- 2946.
DOI |
70 | 贾辉, 张磊安, 王景华, 等. 基于声发射技术的风电叶片复合材料损伤模式识别[J]. 可再生能源, 2022, 40 (1): 67- 72. |
JIA Hui, ZHANG Leian, WANG Jinghua, et al. Damage pattern recognition of wind turbine blade composite material based on acoustic emission technology[J]. Renewable Energy Resources, 2022, 40 (1): 67- 72. | |
71 |
张亚楠, 周勃, 俞方艾, 等. 含缺陷风电叶片复合材料的失稳状态识别和预测[J]. 太阳能学报, 2021, 42 (9): 318- 325.
DOI |
ZHANG Yanan, ZHOU Bo, YU Fang'ai, et al. Identification and prediction of instability status of composites with defective wind power blades[J]. Acta Energiae Solaris Sinica, 2021, 42 (9): 318- 325.
DOI |
|
72 |
PAN X, LIU Z D, XU R, et al. Early warning of damaged wind turbine blades using spatial-temporal spectral analysis of acoustic emission signals[J]. Journal of Sound and Vibration, 2022, 537, 117209.
DOI |
73 |
XU D, LIU P F, CHEN Z P. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission[J]. Composite Structures, 2021, 255, 112954.
DOI |
74 | 声发射检测的基本原理[EB/OL]. (2020-05-22)[2022-11-15]. http://wpic.1006ss.com/e/action/ShowInfo.php?classid=9&id=8082. |
75 |
BARLAS E, ZHU W J, SHEN W Z, et al. Consistent modelling of wind turbine noise propagation from source to receiver[J]. The Journal of the Acoustical Society of America, 2017, 142 (5): 3297- 3310.
DOI |
76 |
SUN S L, WANG T Y, YANG H X, et al. Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function[J]. Renewable Energy, 2022, 181, 59- 70.
DOI |
77 | KRAUSE T, OSTERMANN J. Damage detection for wind turbine rotor blades using airborne sound[J]. Structural Control and Health Monitoring, 2020, 27. |
78 |
LIU W Y. A review on wind turbine noise mechanism and de-noising techniques[J]. Renewable Energy, 2017, 108, 311- 320.
DOI |
79 |
CHANDRASEKHAR K, STEVANOVIC N, CROSS E J, et al. Damage detection in operational wind turbine blades using a new approach based on machine learning[J]. Renewable Energy, 2021, 168, 1249- 1264.
DOI |
80 | 董小泊. 基于DBSCAN的风电叶片音频分类研究[J]. 科技创新与应用, 2022, 12 (4): 23- 25. |
81 |
POOZESH P, AIZAWA K, NIEZRECKI C, et al. Structural health monitoring of wind turbine blades using acoustic microphone array[J]. Structural Health Monitoring, 2017, 16 (4): 471- 485.
DOI |
82 |
TRAYLOR C, DIPAOLA M, WILLIS D J, et al. A computational investigation of airfoil aeroacoustics for structural health monitoring of wind turbine blades[J]. Wind Energy, 2020, 23 (3): 795- 809.
DOI |
83 |
YANG W X, COURT R, JIANG J S. Wind turbine condition monitoring by the approach of SCADA data analysis[J]. Renewable Energy, 2013, 53, 365- 376.
DOI |
84 |
JIN X H, XU Z W, QIAO W. Condition monitoring of wind turbine generators using SCADA data analysis[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (1): 202- 210.
DOI |
85 |
LIU X C, DU J, YE Z S. A condition monitoring and fault isolation system for wind turbine based on SCADA data[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (2): 986- 995.
DOI |
86 |
SCHLECHTINGEN M, SANTOS I F. Wind turbine condition monitoring based on SCADA data using normal behavior models. part 2: application examples[J]. Applied Soft Computing, 2014, 14, 447- 460.
DOI |
87 |
BANGALORE P, LETZGUS S, KARLSSON D, et al. An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox[J]. Wind Energy, 2017, 20 (8): 1421- 1438.
DOI |
88 | KONG Z Q, TANG B P, DENG L, et al. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units[J]. Pergamon, 2020,15:146. |
89 |
MCKINNON C, CARROLL J, MCDONALD A, et al. Investigation of isolation forest for wind turbine pitch system condition monitoring using SCADA data[J]. Energies, 2021, 14 (20): 6601.
DOI |
90 |
PANDIT R K, INFIELD D. SCADA based wind turbine anomaly detection using Gaussian Process (GP) models for wind turbine condition monitoring purposes[J]. IET Renewable Power Generation, 2018, 12 (11): 1249- 1255.
DOI |
91 |
董健, 柳亦兵, 滕伟, 等. 基于BP_Adaboost算法的风电机组叶片结冰检测[J]. 可再生能源, 2021, 39 (5): 632- 636.
DOI |
DONG Jian, LIU Yibing, TENG Wei, et al. Wind turbine blade ice detection based on BP_Adaboost algorithm[J]. Renewable Energy Resources, 2021, 39 (5): 632- 636.
DOI |
|
92 |
张鑫, 徐遵义, 何慧茹, 等. 基于RBM和SVM的风电机组叶片开裂故障预测[J]. 电力系统保护与控制, 2020, 48 (15): 134- 140.
DOI |
ZHANG Xin, XU Zunyi, HE Huiru, et al. Wind turbine blade cracking fault prediction based on RBM and SVM[J]. Power System Protection and Control, 2020, 48 (15): 134- 140.
DOI |
|
93 |
MATSUI T, YAMAMOTO K, OGATA J. Anomaly detection using a SCADA feature extractor and machine learning to detect lightning damage on wind turbine blades[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17 (6): 945- 951.
DOI |
94 | LIU Y, CHENG H, KONG X G, et al. Intelligent wind turbine blade icing detection using supervisory control and data acquisition data and ensemble deep learning[J]. Energy Science & Engineering, 2019, 7 (6): 2633- 2645. |
95 | LI X L. Few-shot wind turbine blade damage early warning system based on sound signal fusion[J]. Multimedia Systems, 2022: 1–10. |
96 |
DOWNEY A, UBERTINI F, LAFLAMME S. Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168, 288- 296.
DOI |
97 |
ZHANG T, XU F Y, JIA M P. A centrifugal fan blade damage identification method based on the multi-level fusion of vibro-acoustic signals and CNN[J]. Measurement, 2022, 199, 111475.
DOI |
98 |
SANATI H, WOOD D, SUN Q A. Condition monitoring of wind turbine blades using active and passive thermography[J]. Applied Sciences, 2018, 8 (10): 2004.
DOI |
99 |
MARQUES R, UNEL M, YILDIZ M, et al. Remaining useful life prediction of laminated composite materials using thermoelastic stress analysis[J]. Composite Structures, 2019, 210, 381- 390.
DOI |
100 |
JENSEN F, TERLAU M, SORG M, et al. Active thermography for the detection of sub-surface defects on a curved and coated GFRP-structure[J]. Applied Sciences, 2021, 11 (20): 9545.
DOI |
101 |
DOROSHTNASIR M, WORZEWSKI T, KRANKENHAGEN R, et al. On-site inspection of potential defects in wind turbine rotor blades with thermography[J]. Wind Energy, 2016, 19 (8): 1407- 1422.
DOI |
102 | 康爽, 陈长征, 周勃, 等. 基于温度阈值风电叶片缺陷识别的红外检测研究[J]. 太阳能学报, 2020, 41 (8): 337- 341. |
KANG Shuang, CHEN Changzheng, ZHOU Bo, et al. Infrared detection research on wind turbine blade defects identification based on temperature threshold[J]. Acta Energiae Solaris Sinica, 2020, 41 (8): 337- 341. | |
103 |
HWANG S, AN Y K, YANG J, et al. Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7 (3): 699- 712.
DOI |
104 |
GALLEGUILLOS C, ZORRILLA A, JIMENEZ A, et al. Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems[J]. Plastics, Rubber and Composites, 2015, 44 (3): 98- 103.
DOI |
105 | 使用高像素红外摄像机的无损检测方法介绍[EB/OL]. (2020-07-15)[2022-11-15]. https://www.elecfans.com/article/85/2020/202007151246376.html. |
106 | 红外热像仪在风力发电机叶片检修的应用[EB/OL]. (2019-08-28)[2022-11-15]. https://www.chem17.com/tech_news/detail/1948210.html. |
107 | XU D H, WEN C B, LIU J H. Wind turbine blade surface inspection based on deep learning and UAV-taken images[J]. Journal of Renewable and Sustainable Energy, 2019, 11 (5): 1- 8. |
108 |
WANG L, ZHANG Z J. Automatic detection of wind turbine blade surface cracks based on UAV-taken images[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (9): 7293- 7303.
DOI |
109 |
YANG X Y, ZHANG Y F, LV W, et al. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier[J]. Renewable Energy, 2021, 163, 386- 397.
DOI |
110 | BARKER J W, BHOWMIK N, BRECKON T P. Semi-supervised surface anomaly detection of composite wind turbine blades from drone imagery[EB/OL]. (2021-12-01)[2022-11-15].https://arxiv.org/abs/2112.00556. |
111 |
DENG L W, GUO Y G, CHAI B R. Defect detection on a wind turbine blade based on digital image processing[J]. Processes, 2021, 9 (8): 1452.
DOI |
112 |
PENG L, LIU J. Detection and analysis of large-scale WT blade surface cracks based on UAV-taken images[J]. IET Image Processing, 2018, 12 (11): 2059- 2064.
DOI |
113 | 无人机为风电巡检做了什么呢?-搜狐[EB/OL]. (2017-01-10)[2022-12-27]. http://mt.sohu.com/20170110/n478281899. |
[1] | 李丹, 秦世耀, 李少林, 贺敬. 基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识[J]. 中国电力, 2024, 57(8): 75-84. |
[2] | 赵晶晶, 杜明, 刘帅, 李梓博, 马闻鹤. 基于模型预测控制的双馈风电机组调频与转子转速恢复策略[J]. 中国电力, 2023, 56(6): 11-17. |
[3] | 张健, 张朋, 徐惠, 宫铭辰, 王悦, 张静. 低温环境下高压断路器故障模拟[J]. 中国电力, 2023, 56(5): 153-162. |
[4] | 李博浩, 郭昆丽, 吕家君, 蔡维正, 刘璐豪, 刘凤仪, 郝翊帆. 弱电网下改进LADRC抑制直驱风机次同步振荡研究[J]. 中国电力, 2023, 56(4): 56-67. |
[5] | 赵隆, 温冠儒, 刘志成, 袁鹏, 董新胜. 基于参数优化的VMD-SVD和LSTM的输电杆塔倾斜状态识别[J]. 中国电力, 2023, 56(12): 217-226, 237. |
[6] | 张广洲, 方书博, 张振宇, 冯智慧, 韩晴. 基于振动传感的直流合成电场测量结构设计[J]. 中国电力, 2023, 56(11): 151-159. |
[7] | 李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52. |
[8] | 马海飞, 滕伟, 彭迪康, 柳亦兵, 靳涛. 基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J]. 中国电力, 2023, 56(10): 71-79. |
[9] | 吴宇辉, 张扬帆, 高峰, 王玙, 王耀函, 杨伟新, 张鸿. 基于工作模态分析的风电机组叶片裂纹损伤在线监测研究[J]. 中国电力, 2023, 56(10): 106-114. |
[10] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[11] | 张利, 屈斌, 王永宁, 陈荣, 刘宝稳, 张少杰, 韩斌, 马宏忠. GIS壳体振动机理和局部放电优化诊断与应用[J]. 中国电力, 2022, 55(3): 80-86. |
[12] | 王帅, 李琳, 崔建业, 赵寿生, 张鹏宁, 王亚琦, 何强. 滤波电容器心子中介质薄膜表面残余电荷对其振动影响的分析[J]. 中国电力, 2022, 55(2): 98-107,151. |
[13] | 侯健健, 王婵娟, 郭昊鑫, 陈晨, 刘学民, 何东欣. 脉冲电压下聚酰亚胺空间电荷行为及其机理研究[J]. 中国电力, 2022, 55(12): 112-123. |
[14] | 赵隆, 郭玉龙, 郑天堂, 曹雯. 考虑特征瞬变的导线微风振动在线监测及预警技术[J]. 中国电力, 2021, 54(9): 34-44. |
[15] | 阳登辉, 朱明星, 徐斌. 孤网失稳状态下频率和暂态谐波分析方法[J]. 中国电力, 2021, 54(8): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||