[1] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 2版. 北京: 中国电力出版社, 2017. [2] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1–11 KANG Chongqing, XIA Qing, ZHANG Boming. Review of power system load forecasting and its development[J]. Automation of Electric Power Systems, 2004, 28(17): 1–11 [3] DUDEK G. Pattern-based local linear regression models for short-term load forecasting[J]. Electric Power Systems Research, 2016, 130: 139–147. [4] 杨智宇, 刘俊勇, 刘友波, 等. 基于自适应深度信念网络的变电站负荷预测[J]. 中国电机工程学报, 2019, 39(14): 4049–4061 YANG Zhiyu, LIU Junyong, LIU Youbo, et al. Transformer load forecasting based on adaptive deep belief network[J]. Proceedings of the CSEE, 2019, 39(14): 4049–4061 [5] 张政国, 吴延增. 基于遗传算法优化LS-SVM的短期电力负荷预测研究[J]. 兰州交通大学学报, 2012, 31(6): 44–48 ZHANG Zhengguo, WU Yanzeng. The short-term power load forecasting based on genetic algorithm optimized LS-SVM[J]. Journal of Lanzhou Jiaotong University, 2012, 31(6): 44–48 [6] BAHRAMI S, HOOSHMAND R A, PARASTEGARI M. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm[J]. Energy, 2014, 72: 434–442. [7] 赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53(6): 48–55 ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-term load forecasting based on complementary ensemble empirical mode decomposition and long short-term memory[J]. Electric Power, 2020, 53(6): 48–55 [8] LI W, QUAN C X, WANG X Y, et al. Short-term power load forecasting based on a combination of VMD and ELM[J]. Polish Journal of Environmental Studies, 2018, 27(5): 2143–2154. [9] CHATURVEDI D K, SINHA A P, MALIK O P. Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network[J]. International Journal of Electrical Power & Energy Systems, 2015, 67: 230–237. [10] FAN G F, PENG L L, HONG W C, et al. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression[J]. Neurocomputing, 2016, 173: 958–970. [11] LIU Z G, SUN W L, ZENG J J. A new short-term load forecasting method of power system based on EEMD and SS-PSO[J]. Neural Computing and Applications, 2014, 24(3/4): 973–983. [12] 张林, 刘继春. 基于EEMD-SE和PSO-KELM的短期负荷区间预测方法[J]. 中国电力, 2021, 54(3): 132–140 ZHANG Lin, LIU Jichun. A short-term load interval forecasting method based on EEMD-SE and PSO-KELM[J]. Electric Power, 2021, 54(3): 132–140 [13] 梁智, 孙国强, 李虎成, 等. 基于VMD与PSO优化深度信念网络的短期负荷预测[J]. 电网技术, 2018, 42(2): 598–606 LIANG Zhi, SUN Guoqiang, LI Hucheng, et al. Short-term load forecasting based on VMD and PSO optimized deep belief network[J]. Power System Technology, 2018, 42(2): 598–606 [14] 李文武, 石强, 王凯, 等. 基于变分模态分解和深度门控网络的径流预测[J]. 水力发电学报, 2020, 39(3): 34–44 LI Wenwu, SHI Qiang, WANG Kai, et al. Runoff prediction based on variational mode decomposition and deep gated network[J]. Journal of Hydroelectric Engineering, 2020, 39(3): 34–44 [15] SIBTAIN M, LI X S, NABI G, et al. Development of a three-stage hybrid model by utilizing a two-stage signal decomposition methodology and machine learning approach to predict monthly runoff at swat river basin, Pakistan[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 7345676. [16] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. [17] PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9): 712–716. [18] FU W L, WANG K, ZHOU J Z, et al. A hybrid approach for multi-step wind speed forecasting based on multi-scale dominant ingredient chaotic analysis, KELM and synchronous optimization strategy[J]. Sustainability, 2019, 11(6): 1804. [19] FU W L, WANG K, ZHANG C, et al. A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine[J]. Transactions of the Institute of Measurement and Control, 2019, 41(15): 4436–4449. [20] CHENG R, JIN Y C. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015, 291: 43–60. [21] 纪昌明, 梁小青, 张验科, 等. 入库径流预报误差随机模型及其应用[J]. 水力发电学报, 2019, 38(10): 75–85 JI Changming, LIANG Xiaoqing, ZHANG Yanke, et al. Stochastic model of reservoir runoff forecast errors and its application[J]. Journal of Hydroelectric Engineering, 2019, 38(10): 75–85 [22] FU W L, WANG K, TAN J W, et al. A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting[J]. Energy Conversion and Management, 2020, 205: 112461. [23] 杜宇龙, 徐天奇, 李琰, 等. 基于自适应扩散核密度分布的风电功率预测误差分析研究[J]. 智慧电力, 2021, 49(11): 51–58 DU Yulong, XU Tianqi, LI Yan, et al. Analysis of wind power prediction error based on adaptive diffusion kernel density distribution[J]. Smart Power, 2021, 49(11): 51–58 [24] 侯慧, 王晴, 赵波, 等. 关键信息缺失下基于相空间重构及机器学习的电力负荷预测[J]. 电力系统保护与控制, 2022, 50(4): 75–82 HOU Hui, WANG Qing, ZHAO Bo, et al. Power load forecasting without key information based on phase space reconstruction and machine learning[J]. Power System Protection and Control, 2022, 50(4): 75–82 [25] 李富鹏, 沈秋英, 王森, 等. 基于大数据和多因素组合分析的单元制配电网精细化负荷预测[J]. 智慧电力, 2020, 48(1): 55–62 LI Fupeng, SHEN Qiuying, WANG Sen, et al. Refined load forecasting method for unit distribution network based on big data and multiple factors[J]. Smart Power, 2020, 48(1): 55–62 [26] 张运驰, 高厚磊, 袁通, 等. 突变量与形态学相结合的配电网故障时刻检测方法[J]. 电力系统保护与控制, 2022, 50(12): 54–62 ZHANG Yunchi, GAO Houlei, YUAN Tong, et al. A fault time detection method in a distribution network based on a sudden change of current and mathematical morphology[J]. Power System Protection and Control, 2022, 50(12): 54–62
|