中国电力 ›› 2021, Vol. 54 ›› Issue (1): 104-115.DOI: 10.11930/j.issn.1004-9649.202003132
付红军1, 陈惠粉1, 赵华2, 王凯丰3, 鲁宗相3, 乔颖3
收稿日期:
2020-03-19
修回日期:
2020-05-05
出版日期:
2021-01-05
发布日期:
2021-01-11
作者简介:
付红军(1968—),男,硕士,高级工程师(教授级),从事电力系统运行及控制技术研究,E-mail:fuhongjun@ha.sgcc.com.cn;陈惠粉(1985—),女,博士,高级工程师,从事电力系统运行及控制技术研究,E-mail:chenhuifen@126.com;赵华(1976—),女,硕士,高级工程师(教授级),从事电力系统安全稳定及控制技术研究,E-mail:zhaohua1102@163.com;王凯丰(1996—),男,硕士研究生,从事控制系统优化和新能源发电技术研究,E-mail:861554820@qq.com
基金资助:
FU Hongjun1, CHEN Huifen1, ZHAO Hua2, WANG Kaifeng3, LU Zongxiang3, QIAO Ying3
Received:
2020-03-19
Revised:
2020-05-05
Online:
2021-01-05
Published:
2021-01-11
Supported by:
摘要: 近年来全球风电渗透率不断提高,风电机组逐步替代传统同步机组,是引起电力系统频率调整困难、影响电网安全的主因之一。通过升级控制设计,风电可以提供旋转惯性和频率调节能力,变害为益,改善系统频率安全。结合调频时间尺度,详述风电参与调频的各控制方法原理和特性,并分析不同方法的利弊和适应环节。分析高渗透率风电并网对电力系统频率稳定的影响,结合近年来多起风电参与的电力系统频率安全事故,指出不少国家和地区都调高了风电调频技术标准。最后,提出应该在技术经济评价、市场与准入等问题开展深入研究,以促进风电成为未来电力系统调频的重要组成部分。
付红军, 陈惠粉, 赵华, 王凯丰, 鲁宗相, 乔颖. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115.
FU Hongjun, CHEN Huifen, ZHAO Hua, WANG Kaifeng, LU Zongxiang, QIAO Ying. Review on Frequency Regulation Technology with High Wind Power Penetration[J]. Electric Power, 2021, 54(1): 104-115.
[1] Ren21. Renewables 2020 global status report[J]. Parais, 2020 [2] 王瑞明, 徐浩, 秦世耀, 等. 风电场一次调频分层协调控制研究与应用[J]. 电力系统保护与控制, 2019, 47(14): 50-58 WANG Ruiming, XU Hao, QIN Shiyao, et al. Research and application on primary frequency regulation of wind farms based on hierarchical coordinated control[J]. Power System Protection and Control, 2019, 47(14): 50-58 [3] YE Y D, QIAO Y, LU Z X. Revolution of frequency regulation in the converter-dominated power system[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 145-156. [4] SUN Y, ZHANG Z, LI G, et al. Review on frequency control of power systems with wind power penetration[C]//2010 International Conference on Power System Technology (POWERCON). IEEE, 2010. [5] 谷俊和, 刘建平, 江浩. 风电接入对系统频率影响及风电调频技术综述[J]. 现代电力, 2015, 32(1): 46-51 GU Junhe, LIU Jianping, JIANG Hao. Literature review on the influence of wind power on system frequency and frequency regulation technologies of wind power[J]. Modern Electric Power, 2015, 32(1): 46-51 [6] STRBAC G, SHAKOOR A, BLACK M, et al. Impact of wind generation on the operation and development of the UK electricity systems[J]. Electric Power Systems Research, 2007, 77(9): 1214-1227. [7] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646 LIU Ju, YAO Wei, WEN Jinyu, et al. Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638-646 [8] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. [9] 张旭, 查效兵, 岳帅. 基于转子动能控制的DFIG调频能力分析与调频方案[J]. 电力科学与技术学报, 2020, 35(3): 141-147 ZHANG Xu, ZHA Xiaobing, YUE Shuai. Frequency regulation capability analysis and regulation plan of doubly-fed induction generator based on the rotor kinetic energy control[J]. Journal of Electric Power Science and Technology, 2020, 35(3): 141-147 [10] 周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, 37(2): 486-496 ZHOU Tianpei, SUN Wei. Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, 37(2): 486-496 [11] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716 FU Yuan, WANG Yi, ZHANG Xiangyu, et al. Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716 [12] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157-169 ZHAO Jiaxing, GAO Wei, SHANGGUAN Mingxia, et al. Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157-169 [13] VIDYANANDAN K V, SENROY N. Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transactions on Power Systems, 2013, 28(2): 837-846. [14] 潘文霞, 全锐, 王飞. 基于双馈风电机组的变下垂系数控制策略[J]. 电力系统自动化, 2015, 39(11): 126-131, 186 PAN Wenxia, QUAN Rui, WANG Fei. A variable droop control strategy for doubly-fed induction generators[J]. Automation of Electric Power Systems, 2015, 39(11): 126-131, 186 [15] 王清, 薛安成, 张晓佳, 等. 双馈风机下垂控制对系统小扰动功角稳定的影响机理分析[J]. 电网技术, 2017, 41(4): 1091-1099 WANG Qing, XUE Ancheng, ZHANG Xiaojia, et al. Mechanism analysis of droop control of DFIG influence on system small-signal dynamic stability based on damping torque analysis[J]. Power System Technology, 2017, 41(4): 1091-1099 [16] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803 ZHANG Xu, CHEN Yunlong, YUE Shuai, et al. Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology, 2018, 42(6): 1793-1803 [17] WANG Y, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems-assessment of wind inertial and primary frequency responses[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2412-2420. [18] YE H, PEI W, QI Z P. Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3414-3423. [19] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232 ZHANG Guanfeng, YANG Junyou, SUN Feng, et al. Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232 [20] LEE J, MULJADI E, SORENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 279-288. [21] 刘彬彬, 杨健维, 廖凯, 等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17-22 LIU Binbin, YANG Jianwei, LIAO Kai, et al. Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J]. Automation of Electric Power Systems, 2016, 40(16): 17-22 [22] GAUTAM D, GOEL L, AYYANAR R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems[J]. IEEE Transactions on Power Systems, 2011, 26(1): 14-224. [23] 李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, 32(7): 32-39, 188 LI Heming, ZHANG Xiangyu, WANG Yi, et al. Virtual inertia control of DFIG-based wind turbines based on the optimal power tracking[J]. Proceedings of the CSEE, 2012, 32(7): 32-39, 188 [24] 陈宇航, 王刚, 侍乔明, 等. 一种新型风电场虚拟惯量协同控制策略[J]. 电力系统自动化, 2015, 39(5): 27-33 CHEN Yuhang, WANG Gang, SHI Qiaoming, et al. A new coordinated virtual inertia control strategy for wind farms[J]. Automation of Electric Power Systems, 2015, 39(5): 27-33 [25] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360 LÜ Zhipeng, SHENG Wanxing, LIU Haitao, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360 [26] 程冲, 杨欢, 曾正, 等. 虚拟同步发电机的转子惯量自适应控制方法[J]. 电力系统自动化, 2015, 39(19): 82-89 CHENG Chong, YANG Huan, ZENG Zheng, et al. Rotor inertia adaptive control method of VSG[J]. Automation of Electric Power Systems, 2015, 39(19): 82-89 [27] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187 XIE Zhen, MENG Hao, ZHANG Xing, et al. Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of Electric Power Systems, 2018, 42(9): 157-163, 187 [28] ALMEIDA R G D, LOPES J A P. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transactions on Power Systems, 2007, 22(3): 944-950. [29] 王济菘, 陈明亮. 虚拟惯量配合变桨控制的风机一次调频实验研究[J]. 电测与仪表, 2019, 56(23): 18-23 WANG Jisong, CHEN Mingliang. An experimental study on primary frequency regulation of D-PMSG with virtual inertia and pitch control[J]. Electrical Measurement & Instrumentation, 2019, 56(23): 18-23 [30] 胡家欣, 胥国毅, 毕天姝, 等. 减载风电机组变速变桨协调频率控制方法[J]. 电网技术, 2019, 43(10): 3656-3663 HU Jiaxin, XU Guoyi, BI Tianshu, et al. A strategy of frequency control for deloaded wind turbine generator based on coordination between rotor speed and pitch angle[J]. Power System Technology, 2019, 43(10): 3656-3663 [31] 李生虎, 朱国伟. 基于有功备用的风电机组一次调频能力及调频效果分析[J]. 电工电能新技术, 2015, 34(10): 28-33, 50 LI Shenghu, ZHU Guowei. Capability and effect of primary frequency regulation by wind turbine generators with active power reserve[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(10): 28-33, 50 [32] 丁磊, 尹善耀, 王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39(9): 2385-2391 DING Lei, YIN Shanyao, WANG Tongxiao, et al. Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power System Technology, 2015, 39(9): 2385-2391 [33] 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-25, 43 ZHANG Zhaosui, SUN Yuanzhang, LI Guojie, et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power Systems, 2011, 35(17): 20-25, 43 [34] XU H, XIA A, HU S, et al. Control of variable-speed variable-pitch wind turbine with doubly-fed induction generator under highly turbulent conditions[C]//IEEE PES Innovative Smart Grid Technologies. IEEE, 2012. [35] BANHAM-HALL D D, TAYLOR G A, SMITH C A, et al. Frequency control using Vanadium redox flow batteries on wind farms[C]//Energy Society General Meeting. IEEE, 2011. [36] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314 TANG Xisheng, MIAO Fufeng, QI Zhiping, et al. Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314 [37] SEBASTIÁN R. Application of a battery energy storage for frequency regulation and peak shaving in a wind diesel power system[J]. IET Generation, Transmission and Distribution, 2016, 10(3): 764-770. [38] TAN J, ZHANG Y C. Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1140-1153. [39] MIAO L, WEN J Y, XIE H L, et al. Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 2732-2742. [40] BAONE C A, DEMARCO C L. From each according to its ability: distributed grid regulation with bandwidth and saturation limits in wind generation and battery storage[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 384-394. [41] ZHANG S Q, MISHRA Y, SHAHIDEHPOUR M. Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1595-1603. [42] 林俐, 王世谦, 谭娟. 计及系统调频需求的风电场有功调整方法[J]. 中国电力, 2011, 44(9): 22-25 LIN Li, WANG Shiqian, TAN Juan. Wind power control considering system frequency regulation[J]. Electric Power, 2011, 44(9): 22-25 [43] 何成明, 王洪涛, 孙华东, 等. 变速风电机组调频特性分析及风电场时序协同控制策略[J]. 电力系统自动化, 2013, 37(9): 1-6, 59 HE Chengming, WANG Hongtao, SUN Huadong, et al. Analysis on frequency control characteristics of variable speed wind turbines and coordinated frequency control strategy of wind farm[J]. Automation of Electric Power Systems, 2013, 37(9): 1-6, 59 [44] 张健, 李文锋, 王晖, 等. 多电源梯级调频方案及风电场级调频时序优化策略[J]. 电力系统自动化, 2019, 43(15): 93-104 ZHANG Jian, LI Wenfeng, WANG Hui, et al. Multi-source cascaded frequency modulation scheme and time-sequence optimization strategy of frequency modulation at level of wind farm[J]. Automation of Electric Power Systems, 2019, 43(15): 93-104 [45] 杨正清. 基于风电主动功率控制的风电场参与系统调频问题研究[D]. 杭州: 浙江大学, 2016. YANG Zhengqing. Wind farm’s participating in grid frequency regulation through active power control[D]. Hangzhou: Zhejiang University, 2016. [46] 王凡, 李海峰, 胥国毅, 等. 调频关键参数对电网频率特性的影响及其灵敏度分析[J]. 电力系统保护与控制, 2020, 48(20): 1-8 WAGN Fan, LI Haifeng, XU Guoyi, et al. Influence of key parameters of frequency control on frequency characteristics of power grid and sensitivity analysis[J]. Power System Protection and Control, 2020, 48(20): 1-8 [47] DOHERTY R, MULLANE A, NOLAN G, et al. An assessment of the impact of wind generation on system frequency control[J]. IEEE Transactions on Power Systems, 2010, 25(1): 452-460. [48] 包宇庆, 李扬, 王春宁, 等. 需求响应参与大规模风电接入下的电力系统频率调节研究[J]. 电力系统保护与控制, 2015, 43(4): 32-37 BAO Yuqing, LI Yang, WANG Chunning, et al. On demand response participating in the frequency control of the grid under high wind penetration[J]. Power System Protection and Control, 2015, 43(4): 32-37 [49] REPLAN Project: Project overview[EB/OL]. [2020-04-23]. https://www.replanproject.dk/project-overview. [50] MEEGAHAPOLA L, FLYNN D. Impact on transient and frequency stability for a power system at very high wind penetration[C]//IEEE PES General Meeting. IEEE, 2010: 1-8. [51] 李斯雯. 双馈感应风电机组参与电力系统调频的控制策略研究[D]. 兰州: 兰州理工大学, 2015. LI Siwen. Control strategy of DFIG-based wind turbines for power system frequency regulation[D]. Lanzhou: Lanzhou University of Technology, 2015. [52] 刘子洲. 风电接入对电力系统频率动态特性影响机理的研究[D]. 徐州: 中国矿业大学, 2019. LIU Zizhou. Research on frequency dynamic characteristic of power system integrated with wind power[D]. Xuzhou: China University of Mining and Technology, 2019. [53] Australian Energy Market Operator. Black system south Australia 28 September 2016—final report[R]. Australian Energy Market Operator Limited, 2016. [54] 曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6 ZENG Hui, SUN Feng, LI Tie, et al. Analysis of “9·28” blackout in south Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13): 1-6 [55] National Grid ESO. Technical report on the events of 9 August 2019[R]. 2019. [56] 方勇杰. 英国“8·9”停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43(24): 1-7 FANG Yongjie. Reflections on frequency stability control technology based on the blackout event of 9 August 2019 in UK[J]. Automation of Electric Power Systems, 2019, 43(24): 1-7 [57] The European Union. Commission regulation (EU) 631/2016 (network code)[R]. 2007. [58] 李军徽, 冯喜超, 严干贵, 等. 高风电渗透率下的电力系统调频研究综述[J]. 电力系统保护与控制, 2018, 46(2): 163-170 LI Junhui, FENG Xichao, YAN Gangui, et al. Survey on frequency regulation technology in high wind penetration power system[J]. Power System Protection and Control, 2018, 46(2): 163-170 [59] E ON Netz GmbH. Grid connection regulations for high and extra high voltage[R]. Bayreuth: E ON Netz GmbH, 2006. [60] Eskom System Operations and Planning Division. Grid code requirements for wind energy facilities connected to distribution or transmission system in south Africa (version 4.4)[S]. 2012. [61] 电力系统安全稳定导则: GB/T 38755—2019[S]. 北京: 中国标准出版社, 2019. [62] 饶建业, 徐小东, 何肇, 等. 中外风电并网技术规定对比[J]. 电网技术, 2012, 36(8): 44-49 RAO Jianye, XU Xiaodong, HE Zhao, et al. Comparison on technical regulations of China and other countries for grid-connection of wind farms[J]. Power System Technology, 2012, 36(8): 44-49 [63] DUVAL J, MEYER B. Frequency behavior of grid with high penetration rate of wind generation[C]//2009 IEEE Buchares in Power Technology, Bucharest: IEEE, 2009: 1-6. [64] Hydro-Québec TransÉnergie. Transmission provider technical requirements for the connection of power plants to the Hydro-Québec transmission system[R]. Quebec: Hydro-Québec TransÉnergie, February 2009. |
[1] | 吴云锐, 张建坡, 田新成, 应恺锋, 陈忠. 计及频率适应和快速稳定特性的多端直流电网改进协调控制策略[J]. 中国电力, 2025, 58(3): 31-42. |
[2] | 赵平, 贾浩森, 高亨孝, 李振兴. 应对岸上故障的海上风电多端柔直系统协调控制策略[J]. 中国电力, 2024, 57(8): 85-95. |
[3] | 韩嘉言, 吕艳玲, 周冲. 重力储能直流环节电池多模式控制方法[J]. 中国电力, 2024, 57(7): 66-73. |
[4] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[5] | 万明元, 任鑫, 王渡, 金亚飞, 王志刚, 王廷举, 杨昌宏, 刘昊坤. 100 MW级联式S-CO2循环动态特性研究[J]. 中国电力, 2024, 57(12): 169-177. |
[6] | 程诺, 陈大才, 陈雪, 阮筱菲, 韦舒清, 韩哲宇. 计及联络开关投切的有源配网电流速断保护定值优化方案[J]. 中国电力, 2024, 57(10): 90-101. |
[7] | 戴志辉, 柳梅元, 韦舒清, 朱卫平, 王文卓. 基于超导磁储能的光伏场站送出线路距离保护[J]. 中国电力, 2024, 57(10): 102-114. |
[8] | 黄呈帅, 梁健, 李波, 杨亚欣, 胡杨, 姚尔人. 基于掺氢燃气轮机的综合能源系统热经济学性能研究[J]. 中国电力, 2024, 57(1): 195-208. |
[9] | 冯宝成, 金震, 侯炜, 徐光福. 花瓣型配电网区域备自投系统控制策略优化研究及应用[J]. 中国电力, 2024, 57(1): 244-254. |
[10] | 王激华, 叶夏明, 秦如意, 应芳义, 俞佳捷. 基于指数型下垂控制的氢电混合储能微网协调控制策略研究[J]. 中国电力, 2023, 56(7): 43-53. |
[11] | 石文喆, 李冰洁, 尤培培, 张泠. 基于深度强化学习的建筑能源系统优化策略[J]. 中国电力, 2023, 56(6): 114-122. |
[12] | 周文俊, 曹毅, 李杰, 金涛, 陈文剑, 周霞. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56(4): 77-87. |
[13] | 王霄鹤, 杨海超, 宋爽, 杨玉新, 殷贵, 王克. 海上风电场经66 kV海缆送出系统过电压机理[J]. 中国电力, 2023, 56(11): 29-37, 48. |
[14] | 陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105. |
[15] | 陈培育, 崇志强, 李树青, 郗晓光, 李振斌, 王慧媛. 基于二级聚集式的端对端电力交易控制策略[J]. 中国电力, 2022, 55(9): 64-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||