中国电力 ›› 2024, Vol. 57 ›› Issue (1): 195-208.DOI: 10.11930/j.issn.1004-9649.202310023
• 面向碳达峰碳中和目标的清洁高效发电技术 • 上一篇 下一篇
黄呈帅1(), 梁健1, 李波1, 杨亚欣1, 胡杨2, 姚尔人2(
)
收稿日期:
2023-10-09
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
黄呈帅(1980—),男,博士,高级工程师,从事新型能源体系研究,E-mail:hcshuai1980@163.com基金资助:
Chengshuai HUANG1(), Jian LIANG1, Bo LI1, Yaxin YANG1, Yang HU2, Erren YAO2(
)
Received:
2023-10-09
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
为实现燃驱天然气场站的低碳高效运行,构建了一种新型综合能源系统架构,采用蒸汽循环回收燃气轮机的余热,电能用于驱动固体氧化物电解制氢技术产生氢气,进而将氢气通入燃气轮机中实现掺氢燃烧,同时利用压缩空气储能技术将可再生能源转化成稳定的电能输出。计算结果表明,系统在设计工况下的能量效率、㶲效率和平准化单位能量成本分别为85.66%、41.37%和294.70元/(MW·h)。敏感性分析表明,燃气轮机压比和掺氢比例、蒸汽循环低压锅炉压力和抽汽系数、压缩空气储能技术释能功率对系统热力学性能影响显著,而燃气轮机压比和掺氢比例、蒸汽循环抽汽系数对系统经济学性能影响显著。多目标优化结果表明,系统的最优㶲效率和平准化单位能量成本分别为42.31%和284.33元/(MW·h)。
黄呈帅, 梁健, 李波, 杨亚欣, 胡杨, 姚尔人. 基于掺氢燃气轮机的综合能源系统热经济学性能研究[J]. 中国电力, 2024, 57(1): 195-208.
Chengshuai HUANG, Jian LIANG, Bo LI, Yaxin YANG, Yang HU, Erren YAO. Study on the Thermo-economic Performance of a Integrated Energy System Based on Hydrogen-fueled Gas Turbine[J]. Electric Power, 2024, 57(1): 195-208.
设备 | 能量方程 | 㶲方程 | ||
压缩机 | ||||
燃烧室 | ||||
透平机 | ||||
泵 | ||||
余热锅炉 | ||||
换热器 | ||||
蒸发器 | ||||
冷凝器 | ||||
吸收器 | ||||
发生器 | ||||
混合器 | ||||
电堆 |
表 1 系统各设备热力学模型
Table 1 The thermodynamic model of each component in the system
设备 | 能量方程 | 㶲方程 | ||
压缩机 | ||||
燃烧室 | ||||
透平机 | ||||
泵 | ||||
余热锅炉 | ||||
换热器 | ||||
蒸发器 | ||||
冷凝器 | ||||
吸收器 | ||||
发生器 | ||||
混合器 | ||||
电堆 |
设备 | 投资成本方程 | |
压缩机 | ||
燃烧室 | ||
膨胀机 | ||
换热器 | ||
蒸发器 | ||
冷凝器 | ||
泵 | ||
固体氧 化物电 解池 | ||
电加热器 | ||
储气室 |
表 2 设备投资成本方程
Table 2 Purchased equipment cost functions
设备 | 投资成本方程 | |
压缩机 | ||
燃烧室 | ||
膨胀机 | ||
换热器 | ||
蒸发器 | ||
冷凝器 | ||
泵 | ||
固体氧 化物电 解池 | ||
电加热器 | ||
储气室 |
运行模块 | 参数 | 本文结果 | 文献结果 | 相对误 差/% | ||||
燃气轮 机机组 | 压缩机出口温度/℃ | 376.59 | 374.65[ | 0.52 | ||||
透平出口温度/℃ | 457.58 | 452.71[ | 1.08 | |||||
压缩机功率/MW | 196.76 | 196.60[ | 0.08 | |||||
透平功率/MW | 322.29 | 325.11[ | –0.87 | |||||
净功率/MW | 125.53 | 128.51[ | –2.32 | |||||
蒸汽循环 | 透平功率/MW | 50.51 | 50.51[ | 0.00 | ||||
泵功率/MW | 0.53 | 0.53[ | 0.00 | |||||
蒸汽循环净功率/MW | 49.98 | 49.98[ | 0.00 | |||||
压缩空气 储能技术 | 压缩机功率/MW | 62.21 | 60.00[ | 3.68 | ||||
透平机功率/MW | 336.16 | 321.00[ | 4.72 | |||||
系统效率/% | 42.66 | 42.00[ | 1.57 | |||||
制冷循环 | 蒸发温度/℃ | 99.47 | 99.47[ | 0.00 | ||||
冷凝温度/℃ | 44.95 | 44.95[ | 0.00 | |||||
能效比 | 0.744 | 0.74[ | 0.54 | |||||
制氢技术 | 电流密度/(A·cm–2) | –0.342 | –0.344[ | –0.58 |
表 3 系统关键设备计算结果验证
Table 3 Validation of key components within the system
运行模块 | 参数 | 本文结果 | 文献结果 | 相对误 差/% | ||||
燃气轮 机机组 | 压缩机出口温度/℃ | 376.59 | 374.65[ | 0.52 | ||||
透平出口温度/℃ | 457.58 | 452.71[ | 1.08 | |||||
压缩机功率/MW | 196.76 | 196.60[ | 0.08 | |||||
透平功率/MW | 322.29 | 325.11[ | –0.87 | |||||
净功率/MW | 125.53 | 128.51[ | –2.32 | |||||
蒸汽循环 | 透平功率/MW | 50.51 | 50.51[ | 0.00 | ||||
泵功率/MW | 0.53 | 0.53[ | 0.00 | |||||
蒸汽循环净功率/MW | 49.98 | 49.98[ | 0.00 | |||||
压缩空气 储能技术 | 压缩机功率/MW | 62.21 | 60.00[ | 3.68 | ||||
透平机功率/MW | 336.16 | 321.00[ | 4.72 | |||||
系统效率/% | 42.66 | 42.00[ | 1.57 | |||||
制冷循环 | 蒸发温度/℃ | 99.47 | 99.47[ | 0.00 | ||||
冷凝温度/℃ | 44.95 | 44.95[ | 0.00 | |||||
能效比 | 0.744 | 0.74[ | 0.54 | |||||
制氢技术 | 电流密度/(A·cm–2) | –0.342 | –0.344[ | –0.58 |
参数 | 数值 | |
GT燃料流量/(mol·s–1) | 0.085 | |
GT过量空气系数 | 3.5 | |
GT掺氢比例 | 0.1 | |
GT压缩机总压比 | 16 | |
SRC高压锅炉压力/Pa | 30390750 | |
SRC低压锅炉压力/Pa | 5065125 | |
SRC抽汽系数 | 0.5 | |
CAES释能功率/kW | 500 | |
CAES储能压力/Pa | 81042000 | |
CAES储能释能压比 | 1.5 | |
SOEC进料利用率 | 0.8 | |
SOEC电流密度/(A·cm–2) | 3000 | |
ARC蒸汽发生器温度/℃ | 90 | |
ARC蒸发温度/℃ | 5 | |
制热器热水温度/℃ | 65 | |
压缩机等熵效率/% | 85 | |
透平等熵效率/% | 88 |
表 4 系统设计工况输入参数
Table 4 Input parameters for the proposed system
参数 | 数值 | |
GT燃料流量/(mol·s–1) | 0.085 | |
GT过量空气系数 | 3.5 | |
GT掺氢比例 | 0.1 | |
GT压缩机总压比 | 16 | |
SRC高压锅炉压力/Pa | 30390750 | |
SRC低压锅炉压力/Pa | 5065125 | |
SRC抽汽系数 | 0.5 | |
CAES释能功率/kW | 500 | |
CAES储能压力/Pa | 81042000 | |
CAES储能释能压比 | 1.5 | |
SOEC进料利用率 | 0.8 | |
SOEC电流密度/(A·cm–2) | 3000 | |
ARC蒸汽发生器温度/℃ | 90 | |
ARC蒸发温度/℃ | 5 | |
制热器热水温度/℃ | 65 | |
压缩机等熵效率/% | 85 | |
透平等熵效率/% | 88 |
图 10 系统各类能量随压缩空气储能系统储释能压力比的变化
Fig.10 Variation of system energy output with the energy release pressure ratio of the compressed air energy storage system
图 11 系统评价指标随压缩空气储能系统储释能压力比的变化
Fig.11 Variation of system evaluation indicators with the energy release pressure ratio of the compressed air energy storage system
图 15 系统评价指标随电解制氢系统进料利用率的变化
Fig.15 Variation of system evaluation indicators with the feed utilization rate of the electrolytic hydrogen production system
参数 | 数值 | |
种群大小 | 100 | |
种群代数 | 200 | |
选择函数 | Tournament | |
变异函数 | Constraint dependent | |
交差函数 | Intermediate | |
交叉分数 | 0.8 | |
帕累托分数 | 0.8 |
表 5 遗传算法参数设置
Table 5 Genetic algorithm parameter settings
参数 | 数值 | |
种群大小 | 100 | |
种群代数 | 200 | |
选择函数 | Tournament | |
变异函数 | Constraint dependent | |
交差函数 | Intermediate | |
交叉分数 | 0.8 | |
帕累托分数 | 0.8 |
决策变量 | 下限 | 上限 | ||
燃气轮机压比 | 10 | 20 | ||
燃气轮机掺氢比例 | 0.05 | 0.15 | ||
蒸汽循环低压锅炉压力/Pa | 5065125 | 10130250 | ||
蒸汽循环抽汽系数 | 0.4 | 0.8 | ||
压缩空气储能模块储释能压比 | 1.5 | 2.0 | ||
压缩空气储能模块释能功率/kW | 300 | 600 | ||
制氢系统进料利用率 | 0.5 | 0.9 |
表 6 决策变量取值范围
Table 6 Range of decision variable values
决策变量 | 下限 | 上限 | ||
燃气轮机压比 | 10 | 20 | ||
燃气轮机掺氢比例 | 0.05 | 0.15 | ||
蒸汽循环低压锅炉压力/Pa | 5065125 | 10130250 | ||
蒸汽循环抽汽系数 | 0.4 | 0.8 | ||
压缩空气储能模块储释能压比 | 1.5 | 2.0 | ||
压缩空气储能模块释能功率/kW | 300 | 600 | ||
制氢系统进料利用率 | 0.5 | 0.9 |
决策变量 | 最优解 | |
燃气轮机压比 | 14.17 | |
燃气轮机掺氢比例 | 0.05 | |
蒸汽循环低压锅炉压力/Pa | 5095515.75 | |
蒸汽循环抽汽系数 | 0.40 | |
压缩空气储能模块储释能压比 | 1.53 | |
压缩空气储能模块释能功率/kW | 306.29 | |
制氢系统进料利用率 | 0.73 |
表 7 A点决策变量取值
Table 7 Optimal solution of decision variable for point A
决策变量 | 最优解 | |
燃气轮机压比 | 14.17 | |
燃气轮机掺氢比例 | 0.05 | |
蒸汽循环低压锅炉压力/Pa | 5095515.75 | |
蒸汽循环抽汽系数 | 0.40 | |
压缩空气储能模块储释能压比 | 1.53 | |
压缩空气储能模块释能功率/kW | 306.29 | |
制氢系统进料利用率 | 0.73 |
a)燃气-蒸汽联合循环 | ||||||||||
物流 | 温度/℃ | 压力/Pa | 物流 | 温度/℃ | 压力/Pa | |||||
1 | 25.00 | 101325.00 | 24 | 279.30 | 494466.0 | |||||
2 | 434.81 | 1435775.25 | 25 | 149.80 | 480280.5 | |||||
3 | 25.00 | 1435775.25 | 26 | 148.66 | 465081.8 | |||||
4 | 1091.74 | 1392205.50 | 27 | 147.54 | 451909.5 | |||||
5 | 517.55 | 104364.75 | 28 | 146.42 | 437724.0 | |||||
6 | 100.37 | 101325.00 | 29 | 145.31 | 424551.8 | |||||
7 | 35.03 | 509664.75 | 30 | 65.00 | 412392.8 | |||||
8 | 142.08 | 509664.75 | 31 | 65.00 | 412392.8 | |||||
9 | 142.08 | 509664.75 | 32 | 65.06 | 101325.0 | |||||
10 | 142.49 | 3039750.00 | 33 | 15.00 | 101325.0 | |||||
11 | 223.85 | 3039750.00 | 34 | 7.00 | 101325.0 | |||||
12 | 492.55 | 2948557.50 | 35 | 25.00 | 101325.0 | |||||
13 | 285.45 | 494466.00 | 36 | 65.00 | 101325.0 | |||||
14 | 142.08 | 509664.75 | 37 | 279.30 | 494466.0 | |||||
15 | 152.08 | 509664.75 | 38 | 149.80 | 480280.5 | |||||
16 | 223.84 | 494466.00 | 39 | 65.00 | 465081.8 | |||||
17 | 279.30 | 494466.00 | 40 | 65.00 | 465081.8 | |||||
18 | 139.54 | 101325.00 | 41 | 65.07 | 101325.0 | |||||
19 | 99.61 | 101325.00 | 42 | 99.61 | 101325.0 | |||||
20 | 35.00 | 98285.25 | 43 | 25.00 | 101325.0 | |||||
21 | 25.00 | 101325.00 | 44 | 65.00 | 101325.0 | |||||
22 | 65.00 | 101325.00 | 45 | 25.00 | 101325.0 | |||||
23 | 279.30 | 494466.00 | 46 | 65.00 | 101325.0 | |||||
b)压缩空气储能技术 | ||||||||||
物流 | 温度/℃ | 压力/Pa | 物流 | 温度/℃ | 压力/Pa | |||||
A1 | 25.00 | 101325.00 | A14 | 52.82 | 734606.3 | |||||
A2 | 156.75 | 312081.00 | A15 | 138.66 | 712314.8 | |||||
A3 | 35.00 | 301948.50 | A16 | 52.27 | 273577.5 | |||||
A4 | 171.13 | 930163.50 | A17 | 137.54 | 265471.5 | |||||
A5 | 35.00 | 902805.80 | A18 | 51.51 | 101325.0 | |||||
A6 | 171.57 | 2776305.00 | A19 | 25.00 | 101325.0 | |||||
A7 | 35.00 | 2693219.00 | A20 | 65.00 | 101325.0 | |||||
A8 | 172.60 | 8286359.00 | A21 | 25.00 | 101325.0 | |||||
A9 | 35.00 | 8037099.00 | A22 | 65.00 | 101325.0 | |||||
A10 | 25.00 | 5299298.00 | A23 | 25.00 | 101325.0 | |||||
A11 | 140.93 | 5140217.00 | A24 | 65.00 | 101325.0 | |||||
A12 | 52.89 | 1972798.00 | A25 | 25.00 | 101325.0 | |||||
A13 | 139.80 | 1913016.00 | A26 | 65.00 | 101325.0 | |||||
c) 固体氧化物电解制氢技术 | ||||||||||
物流 | 温度/℃ | 压力/Pa | 物流 | 温度/℃ | 压力/Pa | |||||
H1 | 25.00 | 101325.00 | H14 | 721.37 | 119563.5 | |||||
H2 | 25.00 | 129696.00 | H15 | 184.08 | 115510.5 | |||||
H3 | 105.66 | 125643.00 | H16 | 104.91 | 112470.8 | |||||
H4 | 115.66 | 125643.00 | H17 | 721.37 | 119563.5 | |||||
H5 | 35.00 | 125643.00 | H18 | 177.52 | 115510.5 | |||||
H6 | 115.66 | 125643.00 | H19 | 35.00 | 112470.8 | |||||
H7 | 115.05 | 125643.00 | H20 | 35.00 | 112470.8 | |||||
H8 | 587.82 | 121590.00 | H21 | 25.00 | 101325.0 | |||||
H9 | 800.00 | 121590.00 | H22 | 65.00 | 101325.0 | |||||
H10 | 25.00 | 5299298.00 | H23 | 35.00 | 125643.0 | |||||
H11 | 140.93 | 5140217.00 | H24 | 35.00 | 125643.0 | |||||
H12 | 52.89 | 1972798.00 | H25 | 25.00 | 125643.0 | |||||
H13 | 139.80 | 1913016.00 |
表 8 综合能源系统最优参数
Table 8 The optimal operating parameters of the proposed system
a)燃气-蒸汽联合循环 | ||||||||||
物流 | 温度/℃ | 压力/Pa | 物流 | 温度/℃ | 压力/Pa | |||||
1 | 25.00 | 101325.00 | 24 | 279.30 | 494466.0 | |||||
2 | 434.81 | 1435775.25 | 25 | 149.80 | 480280.5 | |||||
3 | 25.00 | 1435775.25 | 26 | 148.66 | 465081.8 | |||||
4 | 1091.74 | 1392205.50 | 27 | 147.54 | 451909.5 | |||||
5 | 517.55 | 104364.75 | 28 | 146.42 | 437724.0 | |||||
6 | 100.37 | 101325.00 | 29 | 145.31 | 424551.8 | |||||
7 | 35.03 | 509664.75 | 30 | 65.00 | 412392.8 | |||||
8 | 142.08 | 509664.75 | 31 | 65.00 | 412392.8 | |||||
9 | 142.08 | 509664.75 | 32 | 65.06 | 101325.0 | |||||
10 | 142.49 | 3039750.00 | 33 | 15.00 | 101325.0 | |||||
11 | 223.85 | 3039750.00 | 34 | 7.00 | 101325.0 | |||||
12 | 492.55 | 2948557.50 | 35 | 25.00 | 101325.0 | |||||
13 | 285.45 | 494466.00 | 36 | 65.00 | 101325.0 | |||||
14 | 142.08 | 509664.75 | 37 | 279.30 | 494466.0 | |||||
15 | 152.08 | 509664.75 | 38 | 149.80 | 480280.5 | |||||
16 | 223.84 | 494466.00 | 39 | 65.00 | 465081.8 | |||||
17 | 279.30 | 494466.00 | 40 | 65.00 | 465081.8 | |||||
18 | 139.54 | 101325.00 | 41 | 65.07 | 101325.0 | |||||
19 | 99.61 | 101325.00 | 42 | 99.61 | 101325.0 | |||||
20 | 35.00 | 98285.25 | 43 | 25.00 | 101325.0 | |||||
21 | 25.00 | 101325.00 | 44 | 65.00 | 101325.0 | |||||
22 | 65.00 | 101325.00 | 45 | 25.00 | 101325.0 | |||||
23 | 279.30 | 494466.00 | 46 | 65.00 | 101325.0 | |||||
b)压缩空气储能技术 | ||||||||||
物流 | 温度/℃ | 压力/Pa | 物流 | 温度/℃ | 压力/Pa | |||||
A1 | 25.00 | 101325.00 | A14 | 52.82 | 734606.3 | |||||
A2 | 156.75 | 312081.00 | A15 | 138.66 | 712314.8 | |||||
A3 | 35.00 | 301948.50 | A16 | 52.27 | 273577.5 | |||||
A4 | 171.13 | 930163.50 | A17 | 137.54 | 265471.5 | |||||
A5 | 35.00 | 902805.80 | A18 | 51.51 | 101325.0 | |||||
A6 | 171.57 | 2776305.00 | A19 | 25.00 | 101325.0 | |||||
A7 | 35.00 | 2693219.00 | A20 | 65.00 | 101325.0 | |||||
A8 | 172.60 | 8286359.00 | A21 | 25.00 | 101325.0 | |||||
A9 | 35.00 | 8037099.00 | A22 | 65.00 | 101325.0 | |||||
A10 | 25.00 | 5299298.00 | A23 | 25.00 | 101325.0 | |||||
A11 | 140.93 | 5140217.00 | A24 | 65.00 | 101325.0 | |||||
A12 | 52.89 | 1972798.00 | A25 | 25.00 | 101325.0 | |||||
A13 | 139.80 | 1913016.00 | A26 | 65.00 | 101325.0 | |||||
c) 固体氧化物电解制氢技术 | ||||||||||
物流 | 温度/℃ | 压力/Pa | 物流 | 温度/℃ | 压力/Pa | |||||
H1 | 25.00 | 101325.00 | H14 | 721.37 | 119563.5 | |||||
H2 | 25.00 | 129696.00 | H15 | 184.08 | 115510.5 | |||||
H3 | 105.66 | 125643.00 | H16 | 104.91 | 112470.8 | |||||
H4 | 115.66 | 125643.00 | H17 | 721.37 | 119563.5 | |||||
H5 | 35.00 | 125643.00 | H18 | 177.52 | 115510.5 | |||||
H6 | 115.66 | 125643.00 | H19 | 35.00 | 112470.8 | |||||
H7 | 115.05 | 125643.00 | H20 | 35.00 | 112470.8 | |||||
H8 | 587.82 | 121590.00 | H21 | 25.00 | 101325.0 | |||||
H9 | 800.00 | 121590.00 | H22 | 65.00 | 101325.0 | |||||
H10 | 25.00 | 5299298.00 | H23 | 35.00 | 125643.0 | |||||
H11 | 140.93 | 5140217.00 | H24 | 35.00 | 125643.0 | |||||
H12 | 52.89 | 1972798.00 | H25 | 25.00 | 125643.0 | |||||
H13 | 139.80 | 1913016.00 |
评价指标 | 本文 | 文献[ | 文献[ | |||
能量效率/% | 86.16 | 50.18 | 56.4 |
表 9 系统热力学性能比较
Table 9 Thermodynamic performance comparison
评价指标 | 本文 | 文献[ | 文献[ | |||
能量效率/% | 86.16 | 50.18 | 56.4 |
1 | 马帅杰. 国产30MW燃驱压缩机组工业性应用试验和机组烟气余热利用的研究[D]. 上海: 上海交通大学, 2019. |
MA Shuaijie. Research on test of domestic 30MW gas turbine driven compressor unit and utilization of waste heat[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
2 | 李谦益, 王博华. 关于燃驱离心式压缩机组余热利用的分析[J]. 石化技术, 2018, 25 (4): 103- 104. |
LI Qianyi, WANG Bohua. Analysis of waste heat utilization of centrifugal compressor unit[J]. Petrochemical Industry Technology, 2018, 25 (4): 103- 104. | |
3 |
XU W P, ZHAO P, GOU F F, et al. Performance analysis of a power generation system for pressure energy recovery at natural gas city gate stations[J]. Applied Thermal Engineering, 2022, 213, 118714.
DOI |
4 |
GUO J C, LIU Z J, LI Y, et al. Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage[J]. Renewable Energy, 2022, 182, 1182- 1200.
DOI |
5 |
YAO E R, ZHONG L K, LI R X, et al. Enhanced compression heat recovery of coupling thermochemical conversion to trigenerative compressed air energy storage system: systematic sensitivity analysis and multi-objective optimization[J]. Journal of Energy Storage, 2023, 68, 107738.
DOI |
6 | 汪康康, 孙昕炜, 周波, 等. 基于压缩空气储能附加阻尼控制的电力系统低频振荡抑制策略[J]. 中国电力, 2023, 56 (10): 115- 123. |
WANG Kangkang, SUN Xinwei, ZHOU Bo, et al. Low-frequency oscillation suppression strategy for power system based on supplementary damping control of compressed air energy storage[J]. Electric Power, 2023, 56 (10): 115- 123. | |
7 |
OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: components and operating parameters – A review[J]. Journal of Energy Storage, 2021, 34, 102000.
DOI |
8 |
CHEN S, ARABKOOHSAR A, ZHU T, et al. Development of a micro-compressed air energy storage system model based on experiments[J]. Energy, 2020, 197, 117152.
DOI |
9 |
VIEIRA F S, BALESTIERI J A P, MATELLI J A. Applications of compressed air energy storage in cogeneration systems[J]. Energy, 2021, 214, 118904.
DOI |
10 | 宋权斌, 王健为, 潘思良, 等. 耦合压缩空气储能的冷热电联供系统[J]. 长沙理工大学学报(自然科学版), 2019, 16 (1): 93- 101. |
SONG Quanbin, WANG Jianwei, PAN Siliang, et al. Combined cooling, heating and power system with coupled compressed air storage[J]. Journal of Changsha University of Science & Technology (Natural Science), 2019, 16 (1): 93- 101. | |
11 |
YAO E R, WANG H R, WANG L G, et al. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system[J]. Energy Conversion and Management, 2017, 138, 199- 209.
DOI |
12 | 王晓露, 郭欢, 张华良, 等. 火电厂热电联产机组与压缩空气储能集成系统能量耦合特性分析[J]. 储能科学与技术, 2021, 10 (2): 598- 610. |
WANG Xiaolu, GUO Huan, ZHANG Hualiang, et al. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants[J]. Energy Storage Science and Technology, 2021, 10 (2): 598- 610. | |
13 | 袁铁江, 张红, 杨洋, 等. 新能源-PEM电解制氢全寿命经济性评估[J]. 中国电力, 2023, 56 (3): 30- 35, 46. |
YUAN Tiejiang, ZHANG Hong, YANG Yang, et al. Whole life cycle economic assessment of renewable energy-PEM electrolyzer hydrogen production[J]. Electric Power, 2023, 56 (3): 30- 35, 46. | |
14 |
MOHEBALI NEJADIAN M, AHMADI P, HOUSHFAR E. Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer[J]. Fuel, 2023, 336, 126835.
DOI |
15 |
SUN Y, QIAN T, ZHU J D, et al. Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation[J]. Energy, 2023, 263, 125725.
DOI |
16 |
NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33 (9): 2337- 2354.
DOI |
17 |
KOÇ Y, YAĞLı H, GÖRGÜLÜ A, et al. Analysing the performance, fuel cost and emission parameters of the 50 MW simple and recuperative gas turbine cycles using natural gas and hydrogen as fuel[J]. International Journal of Hydrogen Energy, 2020, 45 (41): 22138- 22147.
DOI |
18 |
DI GAETA A, REALE F, CHIARIELLO F, et al. A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid[J]. Energy, 2017, 129, 299- 320.
DOI |
19 |
崔耀欣, 刘晓佩, 陈明敏. F级重型燃气轮机燃烧器天然气掺氢全压试验研究[J]. 燃气轮机技术, 2021, 34 (2): 38- 42.
DOI |
CUI Yaoxin, LIU Xiaopei, CHEN Mingmin. Experimental study of natural gas mixed with hydrogen under full pressure of F-class heavy duty gas turbine burner[J]. Gas Turbine Technology, 2021, 34 (2): 38- 42.
DOI |
|
20 |
ZHONG L K, YAO E R, HU Y, et al. Thermo-economic analysis of a novel system integrating compressed air and thermochemical energy storage with solid oxide fuel cell-gas turbine[J]. Energy Conversion and Management, 2022, 252, 115114.
DOI |
21 | 王卫良, 王玉召, 吕俊复, 等. 大型燃煤电站锅炉能效评价与节能分析[J]. 中国电力, 2020, 53 (4): 177- 185. |
WANG Weiliang, WANG Yuzhao, LYU Junfu, et al. Energy efficiency assessment of large capacity coal-fired boiler based on exergy analysis[J]. Electric Power, 2020, 53 (4): 177- 185. | |
22 | MOHAMMADI A, ASHOURI M, AHMADI M H, et al. Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle[J]. Energy Science & Engineering, 2018, 6 (5): 506- 522. |
23 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170, 250- 268.
DOI |
24 | 回晓洋. 低品位热源驱动的吸收式制冷循环特性分析及系统仿真[D]. 济南: 山东建筑大学, 2014. |
HUI Xiaoyang. Characteristics analysis and system simulation of absorption refrigerating system driven by low grade heat source[D]. Jinan: Shandong Jianzhu University, 2014. | |
25 |
EBBESEN S D, KNIBBE R, MOGENSEN M. Co-electrolysis of steam and carbon dioxide in solid oxide cells[J]. Journal of the Electrochemical Society, 2012, 159 (8): F482- F489.
DOI |
26 |
JAVADI M A, KHODABAKHSHI S, GHASEMIASL R, et al. Sensivity analysis of a multi-generation system based on a gas/hydrogen-fueled gas turbine for producing hydrogen, electricity and freshwater[J]. Energy Conversion and Management, 2022, 252, 115085.
DOI |
27 | 陈晓利, 陈希叶, 邱朋华, 等. 添加H2对9F级燃气-蒸汽联合循环机组效率的影响[J]. 热能动力工程, 2022, 37 (9): 12- 21. |
CHEN Xiaoli, CHEN Xiye, QIU Penghua, et al. Effect of hydrogen addition on the efficiency of 9F class gas-steam combined cycle unit[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37 (9): 12- 21. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||