中国电力 ›› 2024, Vol. 57 ›› Issue (1): 195-208.DOI: 10.11930/j.issn.1004-9649.202310023

• 面向碳达峰碳中和目标的清洁高效发电技术 • 上一篇    下一篇

基于掺氢燃气轮机的综合能源系统热经济学性能研究

黄呈帅1(), 梁健1, 李波1, 杨亚欣1, 胡杨2, 姚尔人2()   

  1. 1. 陕西省天然气股份有限公司,陕西 西安 710016
    2. 西安交通大学 能源与动力工程学院,陕西 西安 710049
  • 收稿日期:2023-10-09 出版日期:2024-01-28 发布日期:2024-01-23
  • 作者简介:黄呈帅(1980—),男,博士,高级工程师,从事新型能源体系研究,E-mail:hcshuai1980@163.com
    姚尔人(1989—),男,通信作者,博士,副教授,从事新型物理储能技术研究,E-mail:errenyao@163.com
  • 基金资助:
    国家自然科学基金资助项目(52306050);陕西省自然科学基础研究计划项目(2022JQ-510)。

Study on the Thermo-economic Performance of a Integrated Energy System Based on Hydrogen-fueled Gas Turbine

Chengshuai HUANG1(), Jian LIANG1, Bo LI1, Yaxin YANG1, Yang HU2, Erren YAO2()   

  1. 1. Shaanxi Provincial Natural Gas Co., Ltd., Xi'an 710016, China
    2. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2023-10-09 Online:2024-01-28 Published:2024-01-23
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52306050) and Natural Science Basic Research Program of Shaanxi (No.2022JQ-510).

摘要:

为实现燃驱天然气场站的低碳高效运行,构建了一种新型综合能源系统架构,采用蒸汽循环回收燃气轮机的余热,电能用于驱动固体氧化物电解制氢技术产生氢气,进而将氢气通入燃气轮机中实现掺氢燃烧,同时利用压缩空气储能技术将可再生能源转化成稳定的电能输出。计算结果表明,系统在设计工况下的能量效率、㶲效率和平准化单位能量成本分别为85.66%、41.37%和294.70元/(MW·h)。敏感性分析表明,燃气轮机压比和掺氢比例、蒸汽循环低压锅炉压力和抽汽系数、压缩空气储能技术释能功率对系统热力学性能影响显著,而燃气轮机压比和掺氢比例、蒸汽循环抽汽系数对系统经济学性能影响显著。多目标优化结果表明,系统的最优㶲效率和平准化单位能量成本分别为42.31%和284.33元/(MW·h)。

关键词: 燃驱压缩机, 蒸汽循环, 压缩空气储能技术, 固体氧化物电解制氢, 热经济学

Abstract:

In order to achieve low-carbon and high-efficiency operation of natural gas stations driven by hydrogen, a novel integrated energy system is proposed in this paper. The steam cycle is used to recover the waste heat generated by gas turbines. The electrical energy is used to drive the solid oxide electrolysis hydrogen production system to produce hydrogen, and then the mixture of methane and hydrogen is used as the fuel of gas turbine, and the compressed air energy storage technology is used to convert renewable energy into stable electrical energy output. The calculation results indicate that under design conditions, the energy efficiency, exergy efficiency and levelized cost of energy are 85.66%, 41.37% and 294.70 Yuan·(MW·h)–1, respectively. Parameter sensitivity analysis shows that the operating parameters of gas turbine pressure ratio, gas turbine hydrogen blending ratio, steam cycle low-pressure boiler pressure, steam cycle extraction coefficient, compressed air energy storage technology energy release power have significant impact on system thermodynamic performance, while the operating parameters of gas turbine pressure ratio, gas turbine hydrogen blending ratio, and steam cycle extraction coefficient have significant impact on system economic performance.The multi-objective optimization results indicate that the optimal exergy efficiency and standardized unit energy cost of the system are 42.31% and 284.33 Yuan·(MW·h)–1, respectively.

Key words: fuel driven compressor, steam cycle, compressed air energy storage technology, solid oxide electrolysis for hydrogen production, thermo-economics