[1] 陈政, 张翔, 马子明, 等. 引导电力供需长期有效均衡的容量市场设计[J]. 中国电力, 2020, 53(8): 164–172. CHEN Zheng, ZHANG Xiang, MA Ziming, et al. A capacity market design guiding the long-term effective balance of power supply and demand[J]. Electric Power, 2020, 53(8): 164–172. [2] 房欣欣, 杨知方, 余娟, 等. 节点电价的理论剖析与拓展[J]. 中国电机工程学报, 2020, 40(2): 379–390 FANG Xinxin, YANG Zhifang, YU Juan, et al. Theoretical analysis and extension of locational marginal price[J]. Proceedings of the CSEE, 2020, 40(2): 379–390 [3] CAPITANESCU F, GLAVIC M, ERNST D, et al. Contingency filtering techniques for preventive security-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1690–1697. [4] ALLEN J W, BRUCE F W. Power generation operation and control[M]. 2nd edition. Beijing: Tsinghua University Press, 1996. [5] BRANDWAJN V. Efficient bounding method for linear contingency analysis[J]. IEEE Transactions on Power Systems, 1988, 3(1): 38–43. [6] MADANI R, LAVAEI J, BALDICK R. Constraint screening for security analysis of power networks[J]. IEEE Transactions on Power Systems, 2017, 32(3): 1828–1838. [7] ZHAI Q Z, GUAN X H, CHENG J H, et al. Fast identification of inactive security constraints in SCUC problems[J]. IEEE Transactions on Power Systems, 2010, 25(4): 1946–1954. [8] YANG Y F, GUAN X H, ZHAI Q Z. Fast grid security assessment with N-k contingencies[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2193–2203. [9] ARDAKANI A J, BOUFFARD F. Identification of umbrella constraints in DC-based security-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3924–3934. [10] HUA B W, BIE Z H, LIU C, et al. Eliminating redundant line flow constraints in composite system reliability evaluation[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3490–3498. [11] TEJADA-ARANGO D A, SANCHEZ-MARTIN P, RAMOS A. Security constrained unit commitment using line outage distribution factors[J]. IEEE Transactions on Power Systems, 2018, 33(1): 329–337. [12] XAVIER Á S, QIU F, WANG F Y, et al. Transmission constraint filtering in large-scale security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2457–2460. [13] XAVIER Á S, QIU F, AHMED S. Learning to solve large-scale security-constrained unit commitment problems[EB/OL]. (2019-12-28) [2020-04-29]. https://arxiv.org/abs/1902.01697. [14] NG Y, MISRA S, ROALD L A, et al. Statistical learning for DC optimal power flow[C]//2018 Power Systems Computation Conference (PSCC). Dublin, Ireland. IEEE, 2018: 1–7. [15] DEKA D, MISRA S. Learning for DC -OPF: Classifying active sets using neural nets. [EB/OL]. (2019-02-14)[2020-04-29]. https://arxiv.org/abs/1902.05607. [16] 杨晓楠, 孙博, 郎燕生. 基于深度学习的特高压直流闭锁故障智能调度决策[J]. 中国电力, 2020, 53(6): 8–17 YANG Xiaonan, SUN Bo, LANG Yansheng. Intelligent dispatch decision-making for UHVDC blocking fault based on deep learning[J]. Electric Power, 2020, 53(6): 8–17 [17] SHAHAM U, CLONINGER A, COIFMAN R R. Provable approximation properties for deep neural networks[J]. Applied and Computational Harmonic Analysis, 2018, 44(3): 537–557. [18] 邓韦斯, 吴云亮, 孙宇军, 等. 面向现货市场出清的发电计划校正决策方法[J]. 电力系统自动化: 1–14[2020-08-20].http://kns.cnki.net/kcms/detail/32.1180.TP.20200807.1442.002.html. DENG Weisi, WU Yunliang, SUN Yujun, et al. Decision-making method of generation scheduling correction oriented to electricity spot market clearing[J]. Automation of Electric Power Systems: 1–14[2020-08-20].http://kns.cnki.net/kcms/detail/32.1180.TP.20200807.1442.002.html. [19] 吴云亮, 李豹, 罗会洪, 等. 面向现货市场出清的条件断面约束模型化处理方法[J]. 电网技术, 2020, 44(8): 2819–2831 WU Yunliang, LI Bao, LUO Huihong, et al. Approach for conditional section constraints modeling based on spot market clearing[J]. Power System Technology, 2020, 44(8): 2819–2831 [20] 余娟, 杨燕, 杨知方, 等. 基于深度学习的概率能量流快速计算方法[J]. 中国电机工程学报, 2019, 39(1): 22–30, 317 YU Juan, YANG Yan, YANG Zhifang, et al. Fast probabilistic energy flow analysis based on deep learning[J]. Proceedings of the CSEE, 2019, 39(1): 22–30, 317 [21] TIELEMAN T, HINTON G. Rmsprop: Divide the gradient by a running average of its recent magnitude[EB/OL]. (2012-10-11)[2020-04-29]. https://amara.org/en/videos/vrXNiLBHyW92/en/180511/. [22] QIN Z L, LI W Y, XIONG X F. Incorporating multiple correlations among wind speeds, photovoltaic Powers and bus loads in composite system reliability evaluation[J]. Applied Energy, 2013, 110: 285–294. [23] RASKUTTI G, WAINWRIGHT M J, YU B. Early stopping and non-parametric regression: an optimal data-dependent stopping rule[J]. Journal of Machine Learning Research, 2014, 15(1): 335–366.
|