[1] 龚钢军, 张帅, 吴秋新, 等. 基于TensorFlow的高压输电线路异物识别[J]. 电力自动化设备, 2019, 39(4): 204-209, 216 GONG Gangjun, ZHANG Shuai, WU Qiuxin, et al. Foreign body identification based on TensorFlow for high voltage transmission line[J]. Electric Power Automation Equipment, 2019, 39(4): 204-209, 216 [2] 赵雨田. 基于数字图像处理的输电线路异物识别技术研究[D]. 南京: 南京理工大学, 2017. ZHAO Yutian. Research on power line foreign body recognition based on digital image processing[D]. Nanjing: Nanjing University of Science and Technology, 2017. [3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR'05). San Diego: IEEE, 2005: 886-893. [4] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[EB/OL]. (2015-06-08) [2019-08-08]. https://arxiv.org/abs/1506.02640. [6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc of European Conference on Computer Vision. Berlin: Springer, 2016: 21-37. [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014. Columbus, OH, USA. IEEE, 2014. [8] GIRSHICK R.Fast R-CNN[C]//Proc of IEEE International Conference on Computer Vision.Sydney: Institute of Electrical and Electronics Engineers Inc, 2015: 1440-1448. [9] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]//Advances in Neural Information Processing Systems. Montreal: MIT Press, 2015: 91–99. [10] QI S X, MA J, LIN J, et al. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1451-1455. [11] CORBANE C, NAJMAN L, PECOUL E, et al. A complete processing chain for ship detection using optical satellite imagery[J]. International Journal of Remote Sensing, 2010, 31(22): 5837-5854. [12] 施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924 SHI Weisong, SUN Hui, CAO Jie, et al. Edge computing: an emerging computing model for the Internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924 [13] KUMAR N, ZEADALLY S, RODRIGUES J J P C. Vehicular delay-tolerant networks for smart grid data management using mobile edge computing[J]. IEEE Communications Magazine, 2016, 54(10): 60-66. [14] 李彬, 贾滨诚, 曹望璋, 等. 边缘计算在电力需求响应业务中的应用展望[J]. 电网技术, 2018, 42(1): 79-87 LI Bin, JIA Bincheng, CAO Wangzhang, et al. Application prospect of edge computing in power demand response business[J]. Power System Technology, 2018, 42(1): 79-87 [15] MAHMOOD K, LI X, CHAUDHRY S A, et al. Pairing based anonymous and secure key agreement protocol for smart grid edge computing infrastructure[J]. Future Generation Computer Systems, 2018, 88: 491-500. [16] 钱斌, 蔡梓文, 肖勇, 等. 基于边缘计算的电表计量系统数据协同检测方案[J]. 中国电力, 2019, 52(11): 145-152 QIAN Bin, CAI Ziwen, XIAO Yong, et al. Data collaborative detection scheme of electric metering system based on edge computing[J]. Electric Power, 2019, 52(11): 145-152 [17] QURESHI N M F, SIDDIQUI I F, UNAR M A, et al. An aggregate MapReduce data block placement strategy for wireless IoT edge nodes in smart grid[J]. Wireless Personal Communications, 2019, 106(4): 2225-2236. [18] HOWARD A, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2019-08-08]. https://arxiv.org/abs/1704.04861. [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-14) [2019-08-08]. https://arxiv.org/abs/1409.1556. [20] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [21] 张慧. 深度学习中优化算法的研究与改进[D]. 北京: 北京邮电大学, 2018. ZHANG Hui. Research and improvement of optimization algorithms in deep learning[D]. Beijing: Beijing University of Posts and Telecom, 2018. |