[1] 陈勇. 电力生产作业安全管理中的问题及对策[J]. 中国新技术新产品, 2018(12): 138–139 [2] 陈满通. 加强电力安全监督检查的有效性思考[J]. 中外企业家, 2018(11): 224, 226 [3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings-2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005). IEEE, 2005: 886-893. [4] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23−28, 2008. Anchorage, AK, USA. IEEE, 2008, 8: 1−8. [5] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D. Cascade object detection with deformable part models[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010. San Francisco, CA, USA. IEEE, 2010: 2241−2248. [6] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. [7] BENENSON R, MATHIAS M, TIMOFTE R, et al. Pedestrian detection at 100 frames per second[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 2903−2910. [8] SABZMEYDANI P, MORI G. Detecting pedestrians by learning shapelet features[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition, June 17-22, 2007. Minneapolis, MN, USA. IEEE, 2007: 1−8. [9] 杨萌. 基于支持向量机的行人检测技术研究[D]. 北京: 中国科学院大学, 2018. YANG Meng. Research on pedestrian detection technology based on support vector machine[D]. Beijing: University of Chinese Academy of Sciences, 2018. [10] 王江涛, 杨静宇. 红外图像中人体实时检测研究[J]. 系统仿真学报, 2007, 19(19): 4490–4494 WANG Jiangtao, YANG Jingyu. Research on real time pedestrian detection in infrared images[J]. Journal of System Simulation, 2007, 19(19): 4490–4494 [11] 李海龙. 基于区域卷积神经网络的行人检测问题研究[D]. 杭州: 杭州电子科技大学, 2017. LI Hailong. Research on the pedestrian detection based on region of convolution neural network[D]. Hangzhou: Hangzhou Dianzi University, 2017. [12] REN X, BO L, FOX D. RGB-(D) scene labeling: Features and algorithms[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012. Providence, RI. IEEE, 2012: 2759−2766. [13] BENENSON R, MATHIAS M, TUYTELAARS T, et al. Seeking the strongest rigid detector[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013. Portland, OR, USA. IEEE, 2013: 3666-3673. [14] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [15] WATANABE T, ITO S, YOKOI K. Co-occurrence histograms of oriented gradients for pedestrian detection[C]//Advances in Image and Video Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 37−47. [16] KATAOKA H, TAMURA K, IWATA K, et al. Extended feature descriptor and vehicle motion model with tracking-by-detection for pedestrian active safety[J]. IEICE Transactions on Information and Systems, 2014, E97. D(2): 296–304. [17] 刘威, 段成伟, 遇冰, 等. 基于后验HOG特征的多姿态行人检测[J]. 电子学报, 2015, 43(2): 217–224 LIU Wei, DUAN Chengwei, YU Bing, et al. Multi-pose pedestrian detection based on posterior HOG feature[J]. Acta Electronica Sinica, 2015, 43(2): 217–224 [18] 武光利, 王绵沼. 基于HOG特征与SVM分类器的行人检测研究[J]. 中国有线电视, 2017(12): 1413–1415 WU Guangli, WANG Mianzhao. Research on pedestrian detection based on HOG and SVM[J]. China Digital Cable TV, 2017(12): 1413–1415 [19] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer Vision-ECCV 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 404-417. [20] 刘方园, 王水花, 张煜东. 支持向量机模型与应用综述[J]. 计算机系统应用, 2018, 27(4): 1–9 LIU Fangyuan, WANG Shuihua, ZHANG Yudong. Overview on models and applications of support vector machine[J]. Computer Systems & Applications, 2018, 27(4): 1–9 [21] 白羽. 基于智能视频监控的入侵危险区域算法研究[J]. 科技创新与生产力, 2014(11): 45–47, 49 BAI Yu. Research on algorithm of intrusion dangerous region based on the intelligent video monitoring[J]. Sci-Tech Innovation and Productivity, 2014(11): 45–47, 49
|