[1] 胡奥林. 新版《天然气利用政策》解读[J]. 天然气工业, 2013, 33(2): 110–114 HU Aolin. An interpretation of the new-version natural gas utilization policies[J]. Natural Gas Industry, 2013, 33(2): 110–114 [2] 郑忠信. 广东中长期负荷预测回顾[J]. 电力技术经济, 2003, 15(2): 35–37 [3] 闫冬梅, 任丽莉, 康冰. 基于小波回归分析法的短期负荷预测模型研究[J]. 长春师范学院学报(自然科学版), 2010, 29(4): 20–24 YAN Dongmei, REN Lili, KANG Bing. Research of short-term load forecasting model based on wavelet regression analysis[J]. Journal of Changchun Normal University (Natural Science), 2010, 29(4): 20–24 [4] 杨正瓴, 张广涛, 林孔元. 时间序列法短期负荷预测准确度上限估计[J]. 电力系统及其自动化学报, 2004, 16(2): 36–39 YANG Zhengling, ZHANG Guangtao, LIN Kongyuan. Upper limit estimating of short term load forecasting precision by time series analysis[J]. Proceedings of Electric Power System and Automation, 2004, 16(2): 36–39 [5] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1–11 KANG Chongqing, XIA Qing, ZHANG Boming. Review of power system load forecasting and its development[J]. Automation of Electric Power Systems, 2004, 28(17): 1–11 [6] 廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 39(1): 147–152 LIAO Nihuan, HU Zhihong, MA Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011, 39(1): 147–152 [7] 张林, 刘先珊, 阴和俊. 基于时间序列的支持向量机在负荷预测中的应用[J]. 电网技术, 2004, 28(19): 38–41 ZHANG Lin, LIU Xianshan, YIN Hejun. Application of support vector machines based on time sequence in power system load forecasting[J]. Power System Technology, 2004, 28(19): 38–41 [8] 潘峰, 程浩忠, 杨镜非, 等. 基于支持向量机的电力系统短期负荷预测[J]. 电网技术, 2004, 28(21): 39–42 PAN Feng, CHENG Haozhong, YANG Jingfei, et al. Power system short-term load forecasting based on support vector machines[J]. Power System Technology, 2004, 28(21): 39–42 [9] 孙相博, 王岳. 基于改进灰色GM(1, 1)模型的天然气负荷预测[J]. 辽宁石油化工大学学报, 2019, 39(3): 52–57 SUN Xiangbo, WANG Yue. Natural gas load forecasting based on improved grey GM(1, 1) mode[J]. Journal of Liaoning Shihua University, 2019, 39(3): 52–57 [10] ALMANSOORI A, SHAH N. Design and operation of a future hydrogen supply chain: multi-period model[J]. International Journal of Hydrogen Energy, 2009, 34(19): 7883–7897. [11] MA T, JI J, CHEN M Q. Study on the hydrogen demand in China based on system dynamics model[J]. International Journal of Hydrogen Energy, 2010, 35(7): 3114–3119. [12] RAHMOUNI S, SETTOU N, NEGROU B, et al. GIS-based method for future prospect of hydrogen demand in the Algerian road transport sector[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2128–2143. [13] 魏先民. 网络流量预测的组合方法研究[J]. 计算机应用与软件, 2012, 29(9): 139–142 WEI Xianmin. On combinatorial approach for network traffic forecasting[J]. Computer Applications and Software, 2012, 29(9): 139–142 [14] 李永钧. 氢燃料汽车: 前途光明, 道路曲折[J]. 重型汽车, 2019(6): 40–41 [15] 氢云链. 运行里程超8万公里, 89辆福田氢能公交车将亮相2022年冬奥会. (2019-12-29) [2020-03-19]. https://www.autohome.com.cn/tongren [16] 何晓云, 张细雄, 吴砚, 等. 利用年检数据分析机动车行驶里程分布规律[J]. 轻工科技, 2017, 33(9): 87–89 [17] 蒋东方, 贾跃龙, 鲁强, 等. 氢能在综合能源系统中的应用前景[J]. 中国电力, 2020, 53(5): 135–142 JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135–142
|