[1] 陈欢, 彭辉, 舒乃秋, 等. 基于蝙蝠算法优化最小二乘双支持向量机的变压器故障诊断[J]. 高电压技术, 2018, 44(11): 3664–3671 CHEN Huan, PENG Hui, SHU Naiqiu, et al. Fault diagnosis of transformer based on LS-TSVM optimized by bat algorithm[J]. High Voltage Engineering, 2018, 44(11): 3664–3671 [2] 黄新波, 李文君子, 宋桐, 等. 采用遗传算法优化装袋分类回归树组合算法的变压器故障诊断[J]. 高电压技术, 2016, 42(5): 1617–1623 HUANG Xinbo, LI Wenjunzi, SONG Tong, et al. Application of bagging-CART algorithm optimized by genetic algorithm in transformer fault diagnosis[J]. High Voltage Engineering, 2016, 42(5): 1617–1623 [3] 黄新波. 变电设备在线监测与故障诊断[M]. 2版. 北京: 中国电力出版社, 2013. [4] 国家能源局. 变压器油中溶解气体分析和判断导则 DL/T 722—2014[S]. 北京: 中国电力出版社, 2015. National Energy Bureau of the People's Republic of China. Guide to the analysis and the diagnosis of gases dissolved in transformer oil. DL/T 722—2014[S]. Beijing: China Electric Power Press, 2015. [5] 吐松江·卡日, 高文胜, 张紫薇, 等. 基于支持向量机和遗传算法的变压器故障诊断[J]. 清华大学学报(自然科学版), 2018, 58(7): 623–629 KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, et al. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(7): 623–629 [6] 白翠粉, 高文胜, 金雷, 等. 基于3层贝叶斯网络的变压器综合故障诊断[J]. 高电压技术, 2013, 39(2): 330–335 BAI Cuifen, GAO Wensheng, JIN Lei, et al. Integrated diagnosis of transformer faults based on three-layer Bayesian network[J]. High Voltage Engineering, 2013, 39(2): 330–335 [7] 吕忠, 周强, 周琨, 等. 基于遗传算法改进极限学习机的变压器故障诊断[J]. 高压电器, 2015, 51(8): 49–53 LYU Zhong, ZHOU Qiang, ZHOU Kun, et al. Fault diagnosis of transformer based on extreme learning machine optimized by genetic algorithm[J]. High Voltage Apparatus, 2015, 51(8): 49–53 [8] 任静, 黄家栋. 基于免疫RBF神经网络的变压器故障诊断[J]. 电力系统保护与控制, 2010, 38(11): 6–9,14 REN Jing, HUANG Jiadong. Transformer fault diagnosis based on immune RBF neural network[J]. Power System Protection and Control, 2010, 38(11): 6–9,14 [9] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32–42 ZHANG Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32–42 [10] 刘晨斐, 崔昊杨, 李鑫, 等. 不对称样本下基于支持向量机的变压器故障诊断[J]. 高压电器, 2019, 55(7): 216–220 LIU Chenfei, CUI Haoyang, LI Xin, et al. Transformers fault diagnosis based on SVM for unbalanced data[J]. High Voltage Apparatus, 2019, 55(7): 216–220 [11] 杨明, 尹军梅, 吉根林. 不平衡数据分类方法综述[J]. 南京师范大学学报(工程技术版), 2008, 8(4): 7–12 YANG Ming, YIN Junmei, JI Genlin. Classification methods on imbalanced data: a survey[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2008, 8(4): 7–12 [12] 闫欣. 综合过采样和欠采样的不平衡数据集的学习研究[D]. 吉林: 东北电力大学, 2016. YAN Xin. Comprehensive oversampling and undersampling study of imbalanced data sets[D]. Jilin: Northeast Electric Power University, 2016. [13] 肖坚. 基于随机森林的不平衡数据分类方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. XIAO Jian. Research on imbalanced data classification method based on random forest algorithm[D]. Harbin: Harbin Institute of Technology, 2013. [14] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. [15] BLAGUS R, LUSA L. Improved shrunken centroid classifiers for high-dimensional class-imbalanced data[J]. BMC Bioinformatics, 2013, 14: 64. [16] 张家伟, 郭林明, 杨晓梅. 针对不平衡数据的过采样和随机森林改进算法[J]. 计算机工程与应用, 2020, 56(11): 39–45 ZHANG Jiawei, GUO Linming, YANG Xiaomei. Improved oversampling and random forest algorithm for imbalanced data[J]. Computer Engineering and Applications, 2020, 56(11): 39–45 [17] HART P. The condensed nearest neighbor rule (Corresp.)[J]. IEEE Transactions on Information Theory, 1968, 14(3): 515–516. [18] 董冰. 基于贝叶斯网络的电力变压器故障诊断[D]. 抚顺: 辽宁石油化工大学, 2019. DONG Bing. Synthesized diagnosis on transformer faults based on Bayes networks[D]. Fushun: Liaoning Petro Chemical University, 2019. [19] DUVAL M, DEPABLA A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases[J]. IEEE Electrical Insulation Magazine, 2001, 17(2): 31–41. [20] 方涛,钱晔,郭灿杰,等. 基于天牛须搜索优化支持向量机的变压器故障诊断研究[J]. 电力系统保护与控制, 2020, 48(2): 90–96 FANG Tao, QIAN Ye, GUO Canjie, et al. Research on transformer fault diagnosis based on a beetle antennae search optimized support vector machine[J]. Power System Protection and Control, 2020, 48(2): 90–96 [21] 谢国民, 倪乐水. 基于IABC优化SVM的变压器故障诊断[J]. 电力系统保护与控制, 2020, 48(15): 156–163 XIE Guomin, NI Leshui. Transformer fault diagnosis based on an artificial bee colony-support vector machine optimization algorithm[J]. Power System Protection and Control, 2020, 48(15): 156–163 [22] 田凤兰,张恩泽,潘思蓉,等. 基于特征量优选与ICA-SVM的变压器故障诊断模型[J]. 电力系统保护与控制, 2019, 47(17): 163–170 TIAN Fenglan, ZHANG Enze, PAN Sirong, et al. Fault diagnosis model of power transformers based on feature quantity optimization and ICA-SVM[J]. Power System Protection and Control, 2019, 47(17): 163–170 [23] 康兵, 杨勇, 李振兴, 等. 基于实际运行数据的配电变压器故障原因多维度分析[J]. 智慧电力, 2019, 47(3): 66-70, 116. KANG Bing, YANG Yong, LI Zhenxing, et al. Multidimensional analysis of causes of distribution transformer fault based on actual operation data[J]. Smart Power, 2019, 47(3): 66-70, 116. [24] 党东升, 张树永, 葛鹏江, 等. 基于改进量子粒子群优化支持向量机的变压器故障诊断方法[J]. 电力科学与技术学报, 2019, 34(3): 108–113 DANG Dongsheng, ZHANG Shuyong, GE Pengjiang, et al. Transformer fault diagnosis method based on support vector machine optimized by improved quantum-behaved particle swarm optimization[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 108–113 [25] 张利伟. 油浸式电力变压器故障诊断方法研究[D]. 北京: 华北电力大学, 2014. ZHANG Liwei. Study on fault diagnosis approaches for oil-immersed power transformers[D]. Beijing: North China Electric Power University, 2014.
|