中国电力 ›› 2021, Vol. 54 ›› Issue (12): 150-155.DOI: 10.11930/j.issn.1004-9649.202109153

• 电网 • 上一篇    下一篇

基于混合采样和支持向量机的变压器故障诊断

李亮1, 范瑾2, 闫林2, 张宓1, 王鹏飞3, 赵小军4, 肖海滨5   

  1. 1. 生态环境部核与辐射安全中心, 北京 102400;
    2. 中国核电工程有限公司, 北京 100840;
    3. 西安交通大学 核科学与技术学院, 陕西 西安 710049;
    4. 华北电力大学 电力工程系, 河北 保定 071003;
    5. 保定天威保变电气股份有限公司, 河北 保定 071000
  • 收稿日期:2021-10-08 修回日期:2021-11-10 出版日期:2021-12-05 发布日期:2021-12-16
  • 作者简介:李亮(1981-),男,硕士,高级工程师,从事电气仪控设备设计制造研究,E-mail:liliangfj@126.com;张宓(1971-),男,通信作者,硕士,高级工程师,从事电气仪控设备设计制造研究,E-mail:zhangmi@chinansc.cn
  • 基金资助:
    河北省自然科学基金资助项目(特高压并联电抗器的电磁-力-振动耦合机理与本体降噪关键技术研究,E2017502061)

Transformer Fault Diagnosis Based on Hybrid Sampling and Support Vector Machines

LI Liang1, FAN Jin2, YAN Lin2, ZHANG Mi1, WANG Pengfei3, ZHAO Xiaojun4, XIAO Haibin5   

  1. 1. Nuclear and Radiation Safety Center MEE, Beijing 102400, China;
    2. China Nuclear Power Engineering Co., Ltd., Beijing 100840, China;
    3. College of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China;
    4. Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China;
    5. Baoding Tianwei Baobian Electric Co., Ltd., Baoding 071000, China
  • Received:2021-10-08 Revised:2021-11-10 Online:2021-12-05 Published:2021-12-16
  • Supported by:
    This work is supported by Natural Science Foundation of Hebei Province (Study on Electromagnetic-Force-Vibration Coupling Mechanism of UHV Shunt Reactor and the Key Technology of Noumenon Noise Reduction, No.E2017502061).

摘要: 针对变压器不平衡数据集对变压器故障诊断模型产生的影响,提出了基于混合采样和支持向量机(support vector machines, SVM)的变压器故障诊断方法,利用合成少数类过采样技术(synthetic minority oversampling technique, SMOTE)和基于最近邻规则的欠采样方法,分别对变压器故障数据和正常数据进行采样,再利用混合采样得到的平衡数据训练基于支持向量机变压器故障诊断模型。通过测试集对比不平衡数据和平衡数据下基于SVM的变压器故障诊断模型的性能。最后分析了采样率对于变压器故障诊断模型诊断准确率的影响。实验结果表明,该方法可以有效降低不平衡数据对诊断模型的影响,提高变压器故障诊断模型的准确率。

关键词: 变压器, 不平衡数据, 混合采样, 支持向量机

Abstract: Aiming at the impact of transformer imbalanced data set on transformer fault diagnosis model. A transformer fault diagnosis method based on hybrid sampling and support vector machines (SVM) is proposed. It uses synthetic minority oversampling technique (SMOTE) and under sampling method based on nearest neighbor rules to underestimate transformer fault data and normal data, respectively. Sampling and oversampling, and then using the balanced data obtained by hybrid sampling training based on support vector machines transformer fault diagnosis model. The performance of the SVM-based transformer fault diagnosis model is compared through the test set under imbalanced data and balanced data. Finally, the influence of sampling rate on the diagnostic accuracy of transformer fault diagnosis model is analyzed. Experimental results show that this method can effectively reduce the impact of imbalanced data on the diagnostic model and improve the diagnostic accuracy of the transformer fault diagnostic model.

Key words: transformer, imbalanced data, hybrid sampling, support vector machines