[1] 王竞, 夏加富, 刘晓晖, 等. 牵引变电站直流断路器机械状态监测与故障诊断研究[J]. 电力系统保护与控制, 2020, 48(1): 33–40 WANG Jing, XIA Jiafu, LIU Xiaohui, et al. Research on mechanical condition monitoring and fault diagnosis for DC circuit breaker in traction substation[J]. Power System Protection and Control, 2020, 48(1): 33–40 [2] 苗红霞. 高压断路器故障诊断[M]. 北京: 电子工业出版社, 2011. [3] RUNDE M, AURUD T, LUNDGAARD L E, et al. Acoustic diagnosis of high voltage circuit-breakers[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1306–1315. [4] LANDRY M, LEONARD F, LANDRY C, et al. An improved vibration analysis algorithm as a diagnostic tool for detecting mechanical anomalies on power circuit breakers[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 1986–1994. [5] 胡晓光, 戴景民, 纪延超, 等. 基于小波奇异性检测的高压断路器故障诊断[J]. 中国电机工程学报, 2001, 21(5): 67–70 HU Xiaoguang, DAI Jingmin, JI Yanchao, et al. The fault diagnosis of high voltage breakers based on wavelet singularity detection[J]. Proceedings of the CSEE, 2001, 21(5): 67–70 [6] 赵海龙, 王芳, 胡晓光. 小波包–能量谱在高压断路器机械故障诊断中的应用[J]. 电网技术, 2004, 28(6): 46–48, 58 ZHAO Hailong, WANG Fang, HU Xiaoguang. Application of wavelet packet–energy spectrum in mechanical fault diagnosis of high voltage circuit breakers[J]. Power System Technology, 2004, 28(6): 46–48, 58 [7] 孙来军, 胡晓光, 纪延超. 一种基于振动信号的高压断路器故障诊断新方法[J]. 中国电机工程学报, 2006, 26(6): 157–161 SUN Laijun, HU Xiaoguang, JI Yanchao. A new method of fault diagnosis for high voltage circuit breakers based on vibration signals[J]. Proceedings of the CSEE, 2006, 26(6): 157–161 [8] 孙来军, 胡晓光, 纪延超. 改进的小波包-特征熵在高压断路器故障诊断中的应用[J]. 中国电机工程学报, 2007, 27(12): 103–108 SUN Laijun, HU Xiaoguang, JI Yanchao. Fault diagnosis for high voltage circuit breakers with improved characteristic entropy of wavelet packet[J]. Proceedings of the CSEE, 2007, 27(12): 103–108 [9] 黄建, 胡晓光, 巩玉楠. 基于经验模态分解的高压断路器机械故障诊断方法[J]. 中国电机工程学报, 2011, 31(12): 108–113 HUANG Jian, HU Xiaoguang, GONG Yunan. Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition[J]. Proceedings of the CSEE, 2011, 31(12): 108–113 [10] 孙曙光, 于晗, 杜太行, 等. 基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断[J]. 电工技术学报, 2017, 32(7): 20–30 SUN Shuguang, YU Han, DU Taihang, et al. Diagnosis on the switching fault of conventional circuit breaker based on vibration signal sample entropy and RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 20–30 [11] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228–236 SUN Yihang, WU Jianwen, LIAN Shijun, et al. Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 228–236 [12] 张丽萍, 石敦义, 缪希仁. 低压断路器振动特性分析及其故障诊断研究[J]. 电机与控制学报, 2016, 20(10): 82–87 ZHANG Liping, SHI Dunyi, MIAO Xiren. Research on vibration signal feature analysis and its fault diagnosis[J]. Electric Machines and Control, 2016, 20(10): 82–87 [13] 谢小英, 牛益国, 于惠慧, 等. 基于相空间重构与原子分解的复杂电压暂降特征参数辨识[J]. 电力科学与技术学报, 2020, 35(5): 103–110 XIE Xiaoying, NIU Yiguo, YU Huihui, et al. Voltage sag characteristic parameter identification method based on phase space reconstruction and atomic decomposition[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 103–110 [14] 刘尚坤, 唐贵基, 庞彬. 基于相空间重构与平稳子空间分析的滚动轴承故障诊断[J]. 振动与冲击, 2015, 34(22): 187–191 LIU Shangkun, TANG Guiji, PANG Bin. Fault diagnosis for rolling bearings based on phase space reconstruction and stationary subspace analysis[J]. Journal of Vibration and Shock, 2015, 34(22): 187–191 [15] 黄浩. 基于相空间重构理论的滚动轴承故障诊断研究[D]. 武汉: 武汉科技大学, 2014. HUANG Hao. Fault diagnosis of rolling bearing based on phase space reconstruction[D]. Wuhan: Wuhan University of Science and Technology, 2014. [16] 张波, 李忠, 毛宗源, 等. 利用时间序列重构永磁同步电动机混沌吸引子[J]. 控制与决策, 2001, 16(2): 254–256 ZHANG Bo, LI Zhong, MAO Zongyuan, et al. Using time-series to reconstruct the chaotic attractors of the permanent-magnet synchronous motors[J]. Control and Decision, 2001, 16(2): 254–256 [17] 杨正瓴, 林孔元, 余贻鑫. 用时间序列的李雅普诺夫指数计算预报电力系统中的某些失稳现象[J]. 中国电机工程学报, 2001, 21(1): 5–8 YANG Zhengling, LIN Kongyuan, YU Yixin. Predicting some collapses in power systems by computing windowed Lyapunov exponents of time series[J]. Proceedings of the CSEE, 2001, 21(1): 5–8 [18] PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9): 712–716. [19] TAKENS F. Detecting strange attractors in turbulence[M]//Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981: 366-381. [20] FRASER A M, SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134–1140. [21] CAO L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43–50. [22] 赵书涛, 王亚潇, 李沐峰, 等. 基于声振联合特征熵的断路器故障诊断方法[J]. 华北电力大学学报(自然科学版), 2016, 43(6): 20–24 ZHAO Shutao, WANG Yaxiao, LI Mufeng, et al. Breaker fault diagnosis with sound and vibration characteristic entropy[J]. Journal of North China Electric Power University (Natural Science Edition), 2016, 43(6): 20–24 [23] ZHANG X Y, LIANG Y T, ZHOU J Z, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J]. Measurement, 2015, 69: 164–179. [24] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232–2248. [25] LI C S, ZHOU J Z. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm[J]. Energy Conversion and Management, 2011, 52(1): 374–381.
|