[1] WANG H, MENG H, ZHU T. New model for onsite heat loss state estimation of general district heating network with hourly measurements[J]. Energy Conversion and Management, 2018, 157: 71–85. [2] WANG H, WANG H Y, ZHU T, et al. A novel model for steam transportation considering drainage loss in pipeline networks[J]. Applied Energy, 2017, 188: 178–189. [3] TALER D, KACZMARSKI K. A numerical model of steam pipeline[J]. Procedia Engineering, 2016, 157: 158–162. [4] 郭永强. 蒸汽供热管网水力计算的简易算法[J]. 节能, 2008, 27(9): 16–18 GUO Yongqiang. Simplified calculation of hydraulic calculation in steam heating pipe network[J]. Energy Conservation, 2008, 27(9): 16–18 [5] 孙玉宝, 李恩山, 田贯三, 等. 蒸汽热力状态参数计算方法的研究[J]. 煤气与热力, 2006, 26(10): 49–51 SUN Yubao, LI Enshan, TIAN Guansan, et al. Study on calculation method of steam thermal state parameters[J]. Gas & Heat, 2006, 26(10): 49–51 [6] 王威, 罗先喜. 蒸汽管网的热力计算数学模型[J]. 中国设备工程, 2017(15): 199–201 [7] LUO X X, YUAN M Z, WANG H, et al. On steam pipe network modeling and flow rate calculation[J]. Procedia Engineering, 2012, 29: 1897–1903. [8] 吴空. 合肥市供热管网现状及发展分析研究[D]. 合肥: 合肥工业大学, 2010. WU Kong. The research of Hefei heating pipe network current situation and development[D]. Hefei: Hefei University of Technology, 2010. [9] 周游, 李成乐. Excel在蒸汽管网水力计算的应用[J]. 煤气与热力, 2010, 30(5): 17–20 ZHOU You, LI Chengle. Application of excel to hydraulic calculation of steam network[J]. Gas & Heat, 2010, 30(5): 17–20 [10] 殷戈, 葛斌, 王培红. 蒸汽管网热力系统的建模与软件开发[J]. 热力发电, 2008, 37(5): 24–28 YIN Ge, GE Bin, WANG Peihong. Model-establishing and software-developing for thermodynamic system of steam pipe network[J]. Thermal Power Generation, 2008, 37(5): 24–28 [11] 阿拉木斯, 范世东. 架空蒸汽管道水力热力联合计算模型研究及应用[J]. 北京石油化工学院学报, 2018, 26(2): 65–70 A Lamusi, FAN Shidong. Research and application of the combined calculation model of hydraulic and steam power for overhead steam pipeline[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 26(2): 65–70 [12] KUMARI A, DAS S K, SRIVASTAVA P K. Data-driven modeling of fireside corrosion rate[J]. Anti-Corrosion Methods and Materials, 2017, 64(4): 397–404. [13] AYHAN-SARAC B, KARLIK B, BALI T, et al. Neural network methodology for heat transfer enhancement data[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(8): 788–798. [14] LIU T X, LIU S Z, HENG J N, et al. A new hybrid approach for wind speed forecasting applying support vector machine with ensemble empirical mode decomposition and cuckoo search algorithm[J]. Applied Sciences, 2018, 8(10): 1754. [15] 马修元, 段钰锋, 刘猛, 等. 基于PSO-BP神经网络的水焦浆管道压降预测[J]. 中国电机工程学报, 2012, 32(5): 54–60 MA Xiuyuan, DUAN Yufeng, LIU Meng, et al. Prediction of pressure drop of coke water slurry flowing in pipeline by PSO-BP neural network[J]. Proceedings of the CSEE, 2012, 32(5): 54–60 [16] NAFEY A S. Neural network based correlation for critical heat flux in steam-water flows in pipes[J]. International Journal of Thermal Sciences, 2009, 48(12): 2264–2270. [17] 马钢, 李俊飞, 白瑞, 等. 基于PSO-SVM模型的油气管道内腐蚀速率预测[J]. 表面技术, 2019, 48(5): 43–48 MA Gang, LI Junfei, BAI Rui, et al. Prediction of corrosion rate in oil and gas pipelines based on PSO-SVM model[J]. Surface Technology, 2019, 48(5): 43–48 [18] 汪国山, 朱晓星, 谭锐, 等. 水和水蒸汽热力性质国际工业标准IAPWS-IF97和计算程序编制[J]. 汽轮机技术, 2005, 47(3): 161–164, 167 WANG Guoshan, ZHU Xiaoxing, TAN Rui, et al. Introduction to the international standard for properties of water and steam IAPWS-IF97 and programming[J]. Turbine Technology, 2005, 47(3): 161–164, 167 [19] HOFMANN R, LINZNER P, WALTER H, et al. New approximation algorithms for the state functions of water and steam for the application of transient processes and fast on-line applications[J]. Energy, 2018, 164: 1079–1096. [20] TIEN BUI D, SHAHABI H, SHIRZADI A, et al. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia[J]. Remote Sensing, 2018, 10(10): 1527. [21] 刘荣海, 豆龙江, 万书亭, 等. 基于EEMD样本熵和支持向量机的高压断路器故障诊断[J]. 华北电力大学学报(自然科学版), 2018, 45(2): 82–88 LIU Ronghai, DOU Longjiang, WAN Shuting, et al. Fault diagnosis of high voltage circuit breaker based on EEMD sample entropy and support vector machine[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(2): 82–88 [22] 祝晓燕, 张金会, 付士鹏, 等. 基于集合经验模态分解和支持向量机的短期风速预测模型[J]. 华北电力大学学报(自然科学版), 2013, 40(5): 60–64 ZHU Xiaoyan, ZHANG Jinhui, FU Shipeng, et al. Short-term wind speed prediction model based on EEMD and SVM[J]. Journal of North China Electric Power University (Natural Science Edition), 2013, 40(5): 60–64 [23] CAI J J, MA X Q, LI Q. On-line monitoring the performance of coal-fired power unit: a method based on support vector machine[J]. Applied Thermal Engineering, 2009, 29(11/12): 2308–2319. [24] 秦天牧, 吕游, 杨婷婷, 等. SCR烟气脱硝系统自适应混合动态模型[J]. 仪器仪表学报, 2016, 37(12): 2844–2850 QIN Tianmu, LV You, YANG Tingting, et al. Self-adaptive hybrid dynamic model of SCR flue gas denitration system[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2844–2850
|