中国电力 ›› 2024, Vol. 57 ›› Issue (6): 9-17, 44.DOI: 10.11930/j.issn.1004-9649.202401040
郭源1(), 夏向阳1(
), 岳家辉1(
), 李辉2, 吴晋波2
收稿日期:
2024-01-09
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
郭源(1999—),男,硕士研究生,从事储能安全与数值分析研究,E-mail:1574072953@qq.com基金资助:
Yuan GUO1(), Xiangyang XIA1(
), Jiahui YUE1(
), Hui LI2, Jinbo WU2
Received:
2024-01-09
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
针对储能电站实际运行数据中存在电池数据不完整、数据片段化导致检测不准确的问题,提出基于向量误差修正模型的电池簇不一致检测方法。该方法根据随机电压片段数据构建电池簇与电池单体的向量误差修正模型,计算脉冲响应函数,分析电池单体对电池簇的动态作用机制,判断电池簇不一致程度,再通过方差分解分析确定异常电池单体及后续运维。最后,根据储能电站实际运行数据进行分析,验证了电池簇不一致检测方法及运维方案的可行性和有效性,并在100 kW/200 kW·h储能平台进行实际工程测试。
郭源, 夏向阳, 岳家辉, 李辉, 吴晋波. 基于向量误差修正模型的电池簇不一致检测方法及智能运维方案[J]. 中国电力, 2024, 57(6): 9-17, 44.
Yuan GUO, Xiangyang XIA, Jiahui YUE, Hui LI, Jinbo WU. Battery Cluster Inconsistency Detection Method and Intelligent O&M Scheme Based on Vector Error Correction Model[J]. Electric Power, 2024, 57(6): 9-17, 44.
数值分布 | 概率 | |
0.1359 | ||
0.1498 | ||
0.3830 | ||
0.1498 | ||
0.1359 |
表 1 标准正态分布
Table 1 Standard normal distribution
数值分布 | 概率 | |
0.1359 | ||
0.1498 | ||
0.3830 | ||
0.1498 | ||
0.1359 |
电池单体状态 | 处理措施 | |
聚类4 | 正常监测 | |
不一致情况正常,聚类1和聚类2 | 离线均衡 | |
不一致情况接近阈值,聚类2 | ||
聚类3 | ||
不一致情况超过阈值,聚类1和聚类2 | 进行更换 | |
不一致情况接近阈值,聚类1 |
表 2 智慧运维方案
Table 2 Intelligent O&M scheme
电池单体状态 | 处理措施 | |
聚类4 | 正常监测 | |
不一致情况正常,聚类1和聚类2 | 离线均衡 | |
不一致情况接近阈值,聚类2 | ||
聚类3 | ||
不一致情况超过阈值,聚类1和聚类2 | 进行更换 | |
不一致情况接近阈值,聚类1 |
滞后期 | LP | EFP | CIA | CS | HQ | |||||
0 | — | 1.80×107 | –1.3414 | –1.0935 | –1.2830 | |||||
1 | 28001.20 | 1.85×107 | –1.3852 | 0.1025 | –1.0347 | |||||
2 | 3565.87 | 5.07×107 | –0.7983 | 1.9292 | –0.1557 | |||||
3 | 1997.88 | 2.62×108 1) | –5.22381) | –1.25641) | –4.28921) | |||||
4 | 1901.611) | 1.80×107 | –1.3414 | –1.0935 | –1.2830 |
表 3 最优滞后阶数确定
Table 3 Optimal hysteresis determination
滞后期 | LP | EFP | CIA | CS | HQ | |||||
0 | — | 1.80×107 | –1.3414 | –1.0935 | –1.2830 | |||||
1 | 28001.20 | 1.85×107 | –1.3852 | 0.1025 | –1.0347 | |||||
2 | 3565.87 | 5.07×107 | –0.7983 | 1.9292 | –0.1557 | |||||
3 | 1997.88 | 2.62×108 1) | –5.22381) | –1.25641) | –4.28921) | |||||
4 | 1901.611) | 1.80×107 | –1.3414 | –1.0935 | –1.2830 |
原假设 | 特征值 | 迹统计量 | 5%水平临界值 | 概率 | ||||
R=01) | 0.988996 | 161.932000 | 69.81889 | 0.0000 | ||||
R≤11) | 0.747461 | 62.723210 | 47.85613 | 0.0011 | ||||
R≤21) | 0.620352 | 32.447030 | 29.79707 | 0.0242 | ||||
R≤31) | 0.318289 | 11.139810 | 15.49471 | 0.2031 | ||||
R≤4 | 0.115918 | 2.710526 | 3.841466 | 0.0997 |
表 4 协整检验结果
Table 4 Cointegration test results
原假设 | 特征值 | 迹统计量 | 5%水平临界值 | 概率 | ||||
R=01) | 0.988996 | 161.932000 | 69.81889 | 0.0000 | ||||
R≤11) | 0.747461 | 62.723210 | 47.85613 | 0.0011 | ||||
R≤21) | 0.620352 | 32.447030 | 29.79707 | 0.0242 | ||||
R≤31) | 0.318289 | 11.139810 | 15.49471 | 0.2031 | ||||
R≤4 | 0.115918 | 2.710526 | 3.841466 | 0.0997 |
聚类情况 | 数量 | 比例/% | ||
聚类1 | 31 | 12.92 | ||
聚类2 | 74 | 30.83 | ||
聚类3 | 68 | 28.34 | ||
聚类4 | 49 | 20.42 | ||
聚类5 | 18 | 7.50 |
表 5 各聚类情况的成员数量
Table 5 Number of members in each cluster
聚类情况 | 数量 | 比例/% | ||
聚类1 | 31 | 12.92 | ||
聚类2 | 74 | 30.83 | ||
聚类3 | 68 | 28.34 | ||
聚类4 | 49 | 20.42 | ||
聚类5 | 18 | 7.50 |
电池差异度 | 相似度 | 电池差异度 | 相似度 | |||
0.5 | 0.0435 | 10.0 | 0.2333 | |||
1.0 | 0.0656 | 15.0 | 0.2892 | |||
2.0 | 0.1050 | 20.0 | 0.3673 | |||
5.0 | 0.1454 |
表 6 不同电池差异度的相似度
Table 6 Similarity at different battery differences
电池差异度 | 相似度 | 电池差异度 | 相似度 | |||
0.5 | 0.0435 | 10.0 | 0.2333 | |||
1.0 | 0.0656 | 15.0 | 0.2892 | |||
2.0 | 0.1050 | 20.0 | 0.3673 | |||
5.0 | 0.1454 |
电池差异度 | 更换电池前相似度 | 更换电池后相似度 | ||
0.5 | 0.0435 | 0.0474 | ||
1.0 | 0.0656 | 0.0752 | ||
2.0 | 0.1050 | 0.0840 | ||
5.0 | 0.1454 | 0.0936 | ||
10.0 | 0.2333 | 0.0867 | ||
15.0 | 0.2892 | 0.0812 | ||
20.0 | 0.3673 | 0.0795 |
表 7 不同电池差异度更换电池后的相似度
Table 7 Similarity after replacing battery at different battery differences
电池差异度 | 更换电池前相似度 | 更换电池后相似度 | ||
0.5 | 0.0435 | 0.0474 | ||
1.0 | 0.0656 | 0.0752 | ||
2.0 | 0.1050 | 0.0840 | ||
5.0 | 0.1454 | 0.0936 | ||
10.0 | 0.2333 | 0.0867 | ||
15.0 | 0.2892 | 0.0812 | ||
20.0 | 0.3673 | 0.0795 |
电池颜色 | 电池单体状态 | 处理措施 | ||
绿色 | 聚类4 | 正常监测 | ||
黄色 | 不一致情况正常,聚类1和聚类2 | 离线均衡 | ||
不一致情况接近阈值,聚类2 | ||||
聚类3 | ||||
红色 | 不一致情况超过阈值,聚类1和聚类2 | 进行更换 | ||
不一致情况接近阈值,聚类1 |
表 8 电池单体监测等级
Table 8 Battery monitoring levels
电池颜色 | 电池单体状态 | 处理措施 | ||
绿色 | 聚类4 | 正常监测 | ||
黄色 | 不一致情况正常,聚类1和聚类2 | 离线均衡 | ||
不一致情况接近阈值,聚类2 | ||||
聚类3 | ||||
红色 | 不一致情况超过阈值,聚类1和聚类2 | 进行更换 | ||
不一致情况接近阈值,聚类1 |
1 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
2 | 胡静, 黄碧斌, 孟子涵, 等. 电网功能替代性储能替代效果评估和政策机制研究[J]. 中国电力, 2023, 56 (8): 10- 16. |
HU Jing, HUANG Bibin, MENG Zihan, et al. Research on alternative effect evaluation and policy mechanisms of grid-side functional alternative energy storage[J]. Electric Power, 2023, 56 (8): 10- 16. | |
3 |
LV Y, GENG X, LUO W, et al. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety[J]. Journal of Energy Storage, 2023, 72, 108389.
DOI |
4 |
LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31, 195- 220.
DOI |
5 |
XIONG R, SUN W Z, YU Q Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279, 115855.
DOI |
6 |
YU H Q, LI J F, JI Y K, et al. Life-cycle parameter identification method of an electrochemical model for lithium-ion battery pack[J]. Journal of Energy Storage, 2022, 47, 103591.
DOI |
7 | 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34 (18): 3937- 3948. |
YAN Xiangwu, DENG Haoran, GUO Qi, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34 (18): 3937- 3948. | |
8 | 张媛, 夏向阳, 岳家辉, 等. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56 (7): 207- 215, 227. |
ZHANG Yuan, XIA Xiangyang, YUE Jiahui, et al. Online monitoring method of battery stack inconsistency based on discharge quantity of battery clusters[J]. Electric Power, 2023, 56 (7): 207- 215, 227. | |
9 |
NAGUIB M, KOLLMEYER P, EMADI A. Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing: review[J]. IEEE Access, 2021, 9, 50570- 50582.
DOI |
10 | HAN Y J, YUAN H Y, LI J, et al. Study on influencing factors of consistency in manufacturing process of vehicle lithium-ion battery basedon correlation coefficient and multivariate linear regression model[J]. Advanced Theory and Simulations, 2021, 4(8): 202100070. |
11 |
LI D, ZHANG Z, LIU P, et al. DBSCAN-based thermal run away diagnosis of battery systems for electric vehicles[J]. Energies, 2019, 12 (15): 2977.
DOI |
12 | 张朝龙, 赵筛筛, 何怡刚. 基于信息熵与PSO-LSTM的锂电池组健康状态估计方法[J]. 机械工程学报, 2022, 58 (10): 180- 190. |
ZHANG Chaolong, ZHAO Shaishai, HE Yigang. State-of-health estimate for lithium-ion battery using information entropy and PSO-LSTM[J]. Journal of Mechanical Engineering, 2022, 58 (10): 180- 190. | |
13 |
ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207, 354- 362.
DOI |
14 |
FENG X S, ZHANG X K, XIANG Y. An inconsistency assessment method for backup battery packs based on time-series clustering[J]. Journal of Energy Storage, 2020, 31, 101666.
DOI |
15 |
TIAN J Q, LIU X H, CHEN C B, et al. Feature fusion-based inconsistency evaluation for battery pack: improved Gaussian mixture model[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (1): 446- 458.
DOI |
16 | LIN M, XIE H N, SHAN M Y. A hybrid multiscale permutation entropy-based fault diagnosis and inconsistency evaluation approach for lithium battery of E-vehicles[J]. IEEE Access, 1023, 10, 104757- 104768. |
17 |
FANG W D, CHEN H L, ZHOU F M. Fault diagnosis for cell voltage inconsistency of a battery pack in electric vehicles based on real-world driving data[J]. Computers and Electrical Engineering, 2022, 102, 108095.
DOI |
18 |
CUI Z R, CUI N X, RAO J, et al. Current distribution estimation of parallel-connected batteries for inconsistency diagnosis using long short-term memory networks[J]. IEEE Transactions on Transportation Electrification, 2022, 8 (1): 1013- 1025.
DOI |
19 |
何洪文, 王浩宇, 王勇, 等. 基于实车运行数据的锂离子电池健康状态估计[J]. 机械工程学报, 2023, 59 (22): 46- 58.
DOI |
HE Hongwen, WANG Haoyu, WANG Yong, et al. Lithium-ion battery state of health estimation based on real-world driving data[J]. Journal of Mechanical Engineering, 2023, 59 (22): 46- 58.
DOI |
|
20 |
VICHARD L, RAVEY A, VENET P, et al. A method to estimate battery SOH indicators based on vehicle operating data only[J]. Energy, 2021, 225, 120235.
DOI |
21 |
SHEN J W, MA W S, SHU X, et al. Accurate state of health estimation for lithium-ion batteries under random charging scenarios[J]. Energy, 2023, 279, 128092.
DOI |
22 | 王志强, 孙刚. 中国金融发展规模、结构、效率与经济增长关系的经验分析[J]. 管理世界, 2003, (07): 13- 20. |
WANG Zhiqiang, SUN Gang. Empirical analysis of the relationship between China's financial development scale, structure, efficiency and economic growth[J]. Management World, 2003, (07): 13- 20. | |
23 | 李龙飞, 钟海旺, 张广伦, 等. 基于因果分析的行业月度电量预测方法[J]. 电网技术, 2023, 47 (9): 3629- 3637. |
LI Longfei, ZHONG Haiwang, ZHANG Guanglun, et al. Monthly sectoral electricity demand prediction based on causal analysis[J]. Power System Technology, 2023, 47 (9): 3629- 3637. | |
24 | 殷涛, 薛阳, 杨艺宁, 等. 基于向量自回归模型的高损线路窃电检测[J]. 中国电机工程学报, 2022, 42 (3): 1015- 1023. |
YIN Tao, XUE Yang, YANG Yining, et al. Electricity theft detection of high-loss line with vector autoregression[J]. Proceedings of the CSEE, 2022, 42 (3): 1015- 1023. | |
25 | 苏连成, 朱娇娇, 郭高鑫, 等. 基于XGBoost和Wasserstein距离的风电机组塔架振动监测研究[J]. 太阳能学报, 2023, 44 (1): 306- 312. |
SU Liancheng, ZHU Jiaojiao, GUO Gaoxin, et al. Research on wind turbing tower vibration monitoring based on XGBoost and Wasserstein distance[J]. Acta Energiae Solaris Sinica, 2023, 44 (1): 306- 312. | |
26 | 齐火箭, 张新瑞, 王嘉宏, 等. 动力锂离子电池组均衡策略研究[J/OL]. 电源学报: 1–17[2024-04-08]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220215.0853.002.html. |
QI Huojian, ZHANG Xinrui, WANG Jiahong, et al. Research on equilibrium strategy of power lithium-ion battery pack[J/OL]. Journal of Power Supply, 1–17[2024-04-08]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220215.0853.002.html. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||