中国电力 ›› 2024, Vol. 57 ›› Issue (6): 9-17, 44.DOI: 10.11930/j.issn.1004-9649.202401040

• 储能用锂离子电池本体安全关键技术 • 上一篇    下一篇

基于向量误差修正模型的电池簇不一致检测方法及智能运维方案

郭源1(), 夏向阳1(), 岳家辉1(), 李辉2, 吴晋波2   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114
    2. 国网湖南省电力科学研究院,湖南 长沙 410000
  • 收稿日期:2024-01-09 出版日期:2024-06-28 发布日期:2024-06-25
  • 作者简介:郭源(1999—),男,硕士研究生,从事储能安全与数值分析研究,E-mail:1574072953@qq.com
    夏向阳(1968—),男,通信作者,教授,博士生导师,从事柔性直流输电控制和储能安全控制技术研究,E-mail:307351045@qq.com
    岳家辉(1994—),男,博士研究生,从事储能电站安全监测、运行与控制等研究,E-mail:243952600@qq.com
  • 基金资助:
    国家自然科学基金资助项目(柔性直流输电交流侧故障下换流器多桥臂主动应对的能量调控机理及穿越控制研究,51977014)。

Battery Cluster Inconsistency Detection Method and Intelligent O&M Scheme Based on Vector Error Correction Model

Yuan GUO1(), Xiangyang XIA1(), Jiahui YUE1(), Hui LI2, Jinbo WU2   

  1. 1. School of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410114, China
    2. State Grid Hunan Electric Power Research Institute, Changsha 410000, China
  • Received:2024-01-09 Online:2024-06-28 Published:2024-06-25
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Energy Regulation Mechanism and Fault Ride-Through Control of Multi-armed Converter of AC Side Fault in MMC-HVDC System, No.51977014).

摘要:

针对储能电站实际运行数据中存在电池数据不完整、数据片段化导致检测不准确的问题,提出基于向量误差修正模型的电池簇不一致检测方法。该方法根据随机电压片段数据构建电池簇与电池单体的向量误差修正模型,计算脉冲响应函数,分析电池单体对电池簇的动态作用机制,判断电池簇不一致程度,再通过方差分解分析确定异常电池单体及后续运维。最后,根据储能电站实际运行数据进行分析,验证了电池簇不一致检测方法及运维方案的可行性和有效性,并在100 kW/200 kW·h储能平台进行实际工程测试。

关键词: 电池簇不一致, 随机片段数据, 向量误差修正模型, 智能运维方案

Abstract:

To solve the problems of incomplete battery data and fragmented data segments leading to inaccurate detection in the actual operation data of energy storage power stations, this paper proposes a battery cluster inconsistency detection method based on the vector error correction model. In this method, the vector error correction model of battery clusters and battery cells is constructed using random voltage fragment data, the impulse response function is calculated, the dynamic mechanism of battery cells on battery clusters is analyzed, and the inconsistency degree of battery clusters is assessed. Subsequently, the abnormal battery cells and subsequent operation and maintenance are identified by variance decomposition analysis. Finally, through the actual operation data of the energy storage power station, the feasibility and effectiveness of the battery cluster inconsistency detection method and operation and maintenance scheme are verified in an actual engineering test on a 100 kW/200 kW·h energy storage platform.

Key words: battery inconsistency, random fragment data, vector error correction model, intelligent O&M scheme