[1] 赵俊华, 文福拴, 薛禹胜, 等. 电力CPS的架构及其实现技术与挑战[J]. 电力系统自动化, 2010, 34(16):1-7 ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Cyber physical power systems:architecture, implementation techniques and challenges[J]. Automation of Electric Power Systems, 2010, 34(16):1-7 [2] 薛禹胜, 李满礼, 罗剑波, 等. 基于关联特性矩阵的电网信息物理系统耦合建模方法[J]. 电力系统自动化, 2018, 42(2):11-19 XUE Yusheng, LI Manli, LUO Jianbo, et al. Modeling method for coupling relations in cyber physical power systems based on correlation characteristic matrix[J]. Automation of Electric Power Systems, 2018, 42(2):11-19 [3] 汤涌, 卜广全, 易俊. 印度"7.30"、"7.31"大停电事故分析及启示[J]. 中国电机工程学报, 2012, 32(25):167-174, 23 TANG Yong, BU Guangquan, YI Jun. Analysis and lessons of the blackout in Indian power grid on July 30 and 31, 2012[J]. Proceedings of the CSEE, 2012, 32(25):167-174, 23 [4] CARRERAS B A, NEWMAN D E, DOBSON I. North American blackout time series statistics and implications for blackout risk[J]. IEEE Transactions on Power Systems, 2016, 31(6):4406-4414. [5] KUNDUR P. Power system stability and control[M]. New York:McGraw Hill Education, 2002. [6] 傅书逷, 倪以信, 薛禹胜. 直接法稳定分析[M]. 北京:中国电力出版社, 1999. [7] SIDDIQUI S A, VERMA K, NIAZI K R, et al. Real-time monitoring of post-fault scenario for determining generator coherency and transient stability through ANN[J]. IEEE Transactions on Industry Applications, 2018, 54(1):685-692. [8] AGHAMOHAMMADI M R, ABEDI M. DT based intelligent predictor for out of step condition of generator by using PMU data[J]. International Journal of Electrical Power & Energy Systems, 2018, 99:95-106. [9] GOMEZ F R, RAJAPAKSE A D, ANNAKKAGE U D, et al. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems, 2011, 26(3):1474-1483. [10] 戴远航, 陈磊, 张玮灵, 等. 基于多支持向量机综合的电力系统暂态稳定评估[J]. 中国电机工程学报, 2016, 36(5):1173-1180 DAI Yuanhang, CHEN Lei, ZHANG Weiling, et al. Power system transient stability assessment based on multi-support vector machines[J]. Proceedings of the CSEE, 2016, 36(5):1173-1180 [11] 周艳真, 吴俊勇, 于之虹, 等. 用于电力系统暂态稳定预测的支持向量机组合分类器及其可信度评价[J]. 电网技术, 2017, 41(4):1188-1196 ZHOU Yanzhen, WU Junyong, YU Zhihong, et al. Support vector machine ensemble classifier and its confidence evaluation for transient stability prediction of power systems[J]. Power System Technology, 2017, 41(4):1188-1196 [12] 周艳真, 吴俊勇, 冀鲁豫, 等. 基于两阶段支持向量机的电力系统暂态稳定预测及预防控制[J]. 中国电机工程学报, 2018, 38(1):137-147, 350 ZHOU Yanzhen, WU Junyong, JI Luyu, et al. Two-stage support vector machines for transient stability prediction and preventive control of power systems[J]. Proceedings of the CSEE, 2018, 38(1):137-147, 350 [13] 刘威, 张东霞, 王新迎, 等. 基于随机矩阵理论的电力系统暂态稳定性分析[J]. 中国电机工程学报, 2016, 36(18):4854-4863, 5109 LIU Wei, ZHANG Dongxia, WANG Xinying, et al. Power system transient stability analysis based on random matrix theory[J]. Proceedings of the CSEE, 2016, 36(18):4854-4863, 5109 [14] 朱乔木, 党杰, 陈金富, 等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38(3):735-743 ZHU Qiaomu, DANG Jie, CHEN Jinfu, et al. A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE, 2018, 38(3):735-743 [15] 胡伟, 郑乐, 闵勇, 等. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术, 2017, 41(10):3140-3146 HU Wei, ZHENG Le, MIN Yong, et al. Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology, 2017, 41(10):3140-3146 [16] ZHOU Yanzhen, GUO Qinglai, SUN Hongbin, et al. A novel data driven approach for transient stability prediction of power systems considering the operational variability[J]. International Journal of Electrical Power & Energy Systems, 2019(107):379-394. [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016:770-778. [18] CHEN Kunjin, CHEN Kunlong, WANG Qin, et al. Short-term load forecasting with deep residual networks[J]. IEEE Transactions on Smart Grid, 2019, 10(4):3943-3952. [19] 叶倩莹. 基于深度神经网络的可变拓扑电网潮流计算方法研究[D]. 杭州:浙江大学, 2019. YE Qianying. Power flow for grids with unfixed topologies by using deep neural network[D]. Hangzhou:Zhejiang University, 2019. [20] ZHOU Y Z, WU J Y, YU Z H, et al. A hierarchical method for transient stability prediction of power systems using the confidence of a SVM-based ensemble classifier[J]. Energies, 2016, 9(10):778. [21] HE Kaiming, SUN Jian. Convolutional neural networks at constrained time cost[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015. Boston, MA, USA. IEEE, 2015:5353-5360. [22] JU W, QI J J, SUN K. Simulation and analysis of cascading failures on an NPCC power system test bed[C]//2015 IEEE Power & Energy Society General Meeting, July 26-30, 2015. Denver, CO, USA. IEEE, 2015:1-5. [23] CHOW J H, CHEUNG K W. A toolbox for power system dynamics and control engineering education and research[J]. IEEE Transactions on Power Systems, 1992, 7(4):1559-1564. [24] HAN J, KAMBER M, PEI J. Data mining:concept and techniques[M]. Third Edition. Singapore:Elsevier, 2012:363-385.
|