[1] 中国环境科学研究院. 火电厂大气污染物排放标准:GB 13223—2011[S]. 北京:中国环境科学出版社,2012. [2] 赵虹,魏勇. 燃煤锅炉水冷壁烟侧高温腐蚀的机理及影响因素[J]. 动力工程,2002,22(2):1700-1704. ZHAO Hong, WEI Yong. Discussion on the mechanisms and factors of the gas side hign temperature corrosion in water wall ubes for coal fired boilers[J]. Power Engineering, 2002, 22(2): 1700-1704. [3] 李琰,鲁金涛,杨珍,等. 燃煤锅炉烟气侧高温腐蚀研究进展[J]. 腐蚀科学与防护技术,2016,28(2):167-172. LI Yan, LU Jintao, YANG Zhen, et al . Review of high temperature corrosion of flue gas side for coal-fired boiler[J]. Corrosion Science and Protection Technology, 2016, 28(2): 167-172. [4] 丁力,陈曲进. 锅炉高温腐蚀分析与技术措施[J]. 四川电力技术,2007,30(1):67-70. DING Li, CHEN Qujin. Analysis of high temperature corrosion and technical measures for coal-fired boiler[J]. Sichuan Electric Power Technology, 2007, 30(1): 67-70. [5] 郭鲁阳,许华波. 1 025 t/h锅炉水冷壁高温腐蚀分析及预防[J]. 华东电力,2004,32(4):46-48. GUO Luyang, XU Huabo. Analysis on high temperature corrosion of 1 025 t/h boiler water wall and its prevention[J]. East China Electric Power, 2004, 32(4): 46-48. [6] 陈敏生,廖晓春. 600 MW超临界锅炉防止高温腐蚀技术改造和运行调整[J]. 中国电力,2014,47(4): 56-59. CHEN Minsheng, LIAO Xiaochun. The retrofit of high- temperature corrosion prevention and operation adjustment for 600 MW supercritical boiler[J]. Electric power, 2014, 47(4): 56-59. [7] 张基标. 超超临界对冲燃烧锅炉高温腐蚀研究[J]. 浙江电力, 2011,30(4):4-6. ZHANG Jibiao. Research on high-temperature corrosion of ultra- supercritical opposed firing boiler[J]. Zhejiang Electric Power, 2011, 30(4): 4-6. [8] 贾宏禄. 锅炉低氮燃烧改造与高温腐蚀控制分析[J]. 电力科学与工程,2015,31(6):68-73. JIA Honglu. Analysis of low NO x combustion system retrofit and high temperature corrosion control [J]. Electric Power Science and Engineering, 2015, 31(6): 68-73. [9] 张萍,鲁常春. 配风对煤粉炉水冷壁高温腐蚀影响分析及措施[J]. 齐鲁石油化工,2014,42(3):240-243. ZHANG Ping, LU Changchun. Analysis and measures on influence of air distribution on high temperature corrosion of water cooled wall in coal power boiler[J]. Qilu Petrochemical Technology, 2014, 42(3): 240-243. [10] 刘丽萍. 四角切圆锅炉炉内燃烧及配风的数值模拟[D]. 大连:大连理工大学,2008. [11] 胡满银,张丽丽,杜欣,等. 燃料分级燃烧最佳风煤配比的数值模拟[J]. 电力科技与环保,2007,23(6):30-33. HU Manyin, ZHANG Lili, DU Xin, et al . Numerical simulation of the best mixture ratio of coal and air in fuel staging combustion[J]. Electric Power Technology and Environmental Protection, 2007, 23(6): 30-33. [12] 范贤振,郭烈锦,高晖,等. 200 MW四角切向燃烧煤粉炉炉内过程的数值模拟[J]. 西安交通大学学报,2002,36(3):241-245. FAN Xianzhen, GUO Liejin, GAO Hui, et al . Numerical simulation of flow and combustion process in the tangentially fired furnace of a 200 MW pulverized coal boiler[J]. Journal of Xi’an Jiaotong University, 2002, 36(3): 241-245. [13] 黄文静,缪正清,王次成,等. 300 MW四角切圆煤粉锅炉低氮燃烧的数值模拟研究[J]. 锅炉技术,2014,45(3):39-43. HUANG Wenjing, MIAO Zhenqing, WANG Cicheng, et al . Numerical simulation study of low NO x emissions combustion in a 300 MW tangentially fired boiler[J]. Boiler technology, 2014, 45(3): 39-43. [14] VERVISCH L, DOMINGO P. Two recent developments in numerical simulation of premixed and partially premixed turbulent flames[J]. Comptes Rendus Mécanique, 2006, 334(8-9): 523-530. [15] CHOI C R, CHANG N K. Numerical investigation on the flow, combustionand NO x emission characteristics in a 500 MW tangentially fired pulverized-coal boiler[J]. Fuel, 2009, 88(9): 1720-1731. [16] PARK H Y, FAULKNER M, TURRELLMD, et al . Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler [J]. Fuel, 2010, 89(8): 2001-2010. |