中国电力 ›› 2023, Vol. 56 ›› Issue (10): 202-210.DOI: 10.11930/j.issn.1004-9649.202306114
刘周斌1(), 朱涛1, 姜巍1, 张晓波1, 王炯耿1, 管茜茜1, 张秋实2, 赵庆良2(
)
收稿日期:
2023-06-28
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
刘周斌(1970—),男,硕士,从事电力系统及自动化相关工作,E-mail: jxliuzb@qq.com基金资助:
Zhoubin LIU1(), Tao ZHU1, Wei JIANG1, Xiaobo ZHANG1, Jionggeng WANG1, Qianqian GUAN1, Qiushi ZHANG2, Qingliang ZHAO2(
)
Received:
2023-06-28
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
储能电池包的热管理设计是保证储能系统安全运行的重要因素。基于STAR-CCM+平台对不同冷却方式的储能电池包进行结构优化。对比分析了传统间接式液冷、浸没式冷却以及优化后浸没式模型的散热性能,为浸没式储能电池包的设计和开发提供了重要参考。通过仿真与实验对比,验证了所提模型的准确性,所提方法可为储能锂离子电池包热管理设计提供指导。
刘周斌, 朱涛, 姜巍, 张晓波, 王炯耿, 管茜茜, 张秋实, 赵庆良. 储能锂离子电池包冷却系统的数值模拟与结构优化[J]. 中国电力, 2023, 56(10): 202-210.
Zhoubin LIU, Tao ZHU, Wei JIANG, Xiaobo ZHANG, Jionggeng WANG, Qianqian GUAN, Qiushi ZHANG, Qingliang ZHAO. Simulation Analysis and Structure Optimization of Cooling System for Energy Storage Lithium-Ion Battery Pack[J]. Electric Power, 2023, 56(10): 202-210.
项目 | 数值 | |
电芯材料 | 磷酸铁锂 | |
电芯容量/Ah | 280 | |
额定电压/V | 3.2 | |
导热系数 x, y, z/(W·(m·K)–1) | 21.6, 21.6, 2.11 | |
比热容/(J·(kg·K)–1) | 3 660 | |
密度/(kg·m–3) | 2 120 | |
电芯尺寸/mm | 204×174×72 | |
电芯内阻/mΩ | 0.43 |
表 1 电芯参数
Table 1 Parameters of cell
项目 | 数值 | |
电芯材料 | 磷酸铁锂 | |
电芯容量/Ah | 280 | |
额定电压/V | 3.2 | |
导热系数 x, y, z/(W·(m·K)–1) | 21.6, 21.6, 2.11 | |
比热容/(J·(kg·K)–1) | 3 660 | |
密度/(kg·m–3) | 2 120 | |
电芯尺寸/mm | 204×174×72 | |
电芯内阻/mΩ | 0.43 |
方案 | 1 | 2 | 3 | 4 | 5 | |||||
数量/万 | 738 | 886 | 984 | 1143 | 1737 |
表 2 5种方案网格数量
Table 2 Five cases with mesh numbers
方案 | 1 | 2 | 3 | 4 | 5 | |||||
数量/万 | 738 | 886 | 984 | 1143 | 1737 |
项目 | 水-乙二醇溶液 | 绝缘液体 | ||
密度(20 ℃)/(kg·m–3) | 1075 | 820 | ||
导热系数/(W·(m·K)–1) | 0.375 | 0.142 | ||
比热容/(J·(kg·K)–1) | 3251 | 2200 | ||
运动粘度(40 ℃)/cSt | 4.8 | 10.5 |
表 3 冷却液参数
Table 3 Parameters of coolant
项目 | 水-乙二醇溶液 | 绝缘液体 | ||
密度(20 ℃)/(kg·m–3) | 1075 | 820 | ||
导热系数/(W·(m·K)–1) | 0.375 | 0.142 | ||
比热容/(J·(kg·K)–1) | 3251 | 2200 | ||
运动粘度(40 ℃)/cSt | 4.8 | 10.5 |
冷却方式 | 间接式 | 浸没式 | 优化模型 | |||
压降/kPa | 66.10 | 3.50 | 1.38 |
表 4 压降对比
Table 4 Comparison of pressure drop
冷却方式 | 间接式 | 浸没式 | 优化模型 | |||
压降/kPa | 66.10 | 3.50 | 1.38 |
1 | 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59 (6): 239- 254. |
YANG Xulai, YUAN Shuaishuai, YANG Wenjing, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59 (6): 239- 254. | |
2 | 郎伟强, 楼鑫, 叶加炜, 等. 新能源系统中的储能技术分析[J]. 电子技术, 2022, 51 (10): 172- 173. |
LANG Weiqiang, LOU Xin, YE Jiawei, et al. Analysis of energy storage technology in new energy system[J]. Electronic Technology, 2022, 51 (10): 172- 173. | |
3 |
俞恩科, 陈梁金. 大规模电力储能技术的特性与比较[J]. 浙江电力, 2011, 30 (12): 4- 8.
DOI |
YU Enke, CHEN Liangjin. Characteristics and comparison of large-scale electric energy storage technologies[J]. Zhejiang Electric Power, 2011, 30 (12): 4- 8.
DOI |
|
4 |
刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12 (1): 312- 318.
DOI |
LIU Yang, TENG Weijun, GU Qingfa, et al. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy Storage Science and Technology, 2023, 12 (1): 312- 318.
DOI |
|
5 |
KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149, 192- 212.
DOI |
6 |
VISHNUMURTHY K A, GIRISH K H. A comprehensive review of battery technology for E-mobility[J]. Journal of the Indian Chemical Society, 2021, 98 (10): 100173.
DOI |
7 | TERADA N, YANAGI T, ARAI S, et al. Development of lithium batteries for energy storage and EV applications[J]. Journal of Power Sources, 2001, 100 (1/2): 80- 92. |
8 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140 (6): 1526- 1533.
DOI |
9 |
CHEN Z Y, XIONG R, SUN F C. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55 (24): 93.
DOI |
10 |
BAI F F, CHEN M B, SONG W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126, 17- 27.
DOI |
11 |
CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167, 781- 790.
DOI |
12 |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110 (2): 377- 382.
DOI |
13 |
FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155, 96- 109.
DOI |
14 |
CHEN D F, JIANG J C, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering, 2016, 94, 846- 854.
DOI |
15 |
ZHAO Q A, WU H W, WANG Z H, et al. Numerical research on lithium-ion battery thermal management utilizing a novel cobweb-like channel cooling plate exchanger[J]. Frontiers in Energy Research, 2022, 10, 992779.
DOI |
16 | 孔为, 金劲涛, 陆西坡, 等. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11 (7): 2258- 2265. |
KONG Wei, JIN Jintao, LU Xipo, et al. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel[J]. Energy Storage Science and Technology, 2022, 11 (7): 2258- 2265. | |
17 |
WU M S, HUNG Y H, WANG Y Y, et al. Heat dissipation behavior of the nickel/metal hydride battery[J]. Journal of the Electrochemical Society, 2000, 147 (3): 930.
DOI |
18 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182, 262- 281.
DOI |
19 |
ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries-a review[J]. Journal of Power Sources, 2022, 525, 231094.
DOI |
20 |
NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110 (2): 349- 356.
DOI |
21 |
DENG Y W, FENG C L, JIAQIANG E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review[J]. Applied Thermal Engineering, 2018, 142, 10- 29.
DOI |
22 |
田钧, 高帅. 基于浸没式技术的纯电动汽车电池包热管理方案解析[J]. 汽车电器, 2023, (5): 6- 8.
DOI |
TIAN Jun, GAO Shuai. Solution analysis of battery pack thermal management for pure electric vehicle based on immersion technology[J]. Auto Electric Parts, 2023, (5): 6- 8.
DOI |
|
23 |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140 (1): 111- 124.
DOI |
24 |
JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196 (23): 10359- 10368.
DOI |
25 | 路帅. 锂离子动力电池模组热场仿真及散热控制[D]. 吉林: 东北电力大学, 2021. |
LU Shuai. Thermal field simulation and heat dissipation control of lithium ion power battery module[D]. Jilin: Northeast Dianli University, 2021. | |
26 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1): 5- 12.
DOI |
27 |
吕超, 张爽, 朱世怀, 等. 储能锂离子电池包强制风冷系统热仿真分析与优化[J]. 电力系统保护与控制, 2021, 49 (12): 48- 55.
DOI |
LÜ Chao, ZHANG Shuang, ZHU Shihuai, et al. Thermal simulation analysis and optimization of forced air cooling system for energy storage lithium-ion battery pack[J]. Power System Protection and Control, 2021, 49 (12): 48- 55.
DOI |
|
28 |
王明强, 郭月明, 许淘淘, 等. 锂离子动力电池组发热功率试验研究[J]. 汽车零部件, 2020, (5): 69- 72.
DOI |
WANG Mingqiang, GUO Yueming, XU Taotao, et al. Experiment research on the heating power of lithium-ion battery module[J]. Automobile Parts, 2020, (5): 69- 72.
DOI |
|
29 |
HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89, 387- 395.
DOI |
30 |
STERN F, WILSON R V, COLEMAN H W, et al. Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures[J]. Journal of Fluids Engineering, 2001, 123 (4): 793- 802.
DOI |
31 | 安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41 (1): 22- 42. |
AN Fuqiang, ZHAO Hongliang, CHENG Zhi, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41 (1): 22- 42. | |
32 | 卢子敬, 李子寿, 郭相国, 等. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56 (7): 33- 42. |
LU Zijing, LI Zishou, GUO Xiangguo, et al. Optimal configuration of electricity-hydrogen hybrid energy storage system based on multi-objective artificial hummingbird algorithm[J]. Electric Power, 2023, 56 (7): 33- 42. | |
33 | 张媛, 夏向阳, 岳家辉, 等. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56 (7): 207- 215, 227. |
ZHANG Yuan, XIA Xiangyang, YUE Jiahui, et al. Online monitoring method of battery stack inconsistency based on discharge quantity of battery clusters[J]. Electric Power, 2023, 56 (7): 207- 215, 227. | |
34 | 余斌, 宋兴荣, 周挺, 等. 基于梅尔倒谱系数特征集的储能变流器开路故障诊断方法[J]. 中国电力, 2022, 55 (12): 34- 42. |
YU Bin, SONG Xingrong, ZHOU Ting, et al. Open circuit fault diagnosis method of energy storage converter based on Mel cepstrum coefficient feature set[J]. Electric Power, 2022, 55 (12): 34- 42. | |
35 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. |
[1] | 耿直, 鲁向武, 王剑利, 石天庆, 常绪成, 顾煜炯. CPC 集热器冷却通道结构优化及换热流动数值模拟[J]. 中国电力, 2023, 56(9): 206-214. |
[2] | 张顺, 王振国, 姜文东, 徐枫, 段忠东. 特高压输电塔龙卷风荷载特性的数值模拟[J]. 中国电力, 2023, 56(10): 153-163. |
[3] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[4] | 潘晓伟, 彭烁, 李硕, 周贤, 王长军, 刘峻, 王瑞元. 余热锅炉烟气低温余热回收塔流场均匀性研究[J]. 中国电力, 2022, 55(3): 159-166. |
[5] | 雷嗣远, 李海浩, 李乐田, 倪贵东, 孔凡海, 吴国勋, 卞子君. SCR脱硝低负荷投运烟气调温旁路改造设计[J]. 中国电力, 2019, 52(9): 179-184. |
[6] | 陈海杰, 马务, 刘贡祎, 高攀. W火焰锅炉SNCR脱硝及其对SCR入口流场的影响[J]. 中国电力, 2019, 52(7): 146-153. |
[7] | 闫俊伏, 赵学斌. SCR催化剂的磨损试验与数值模拟研究[J]. 中国电力, 2019, 52(5): 170-175. |
[8] | 肖育军, 邹毅辉, 李彩亭, 周雪斌. SCR系统结构模型与数值模型的适用性分析[J]. 中国电力, 2019, 52(3): 146-152,160. |
[9] | 刘含笑, 陈招妹, 郭高飞, 王剑波, 崔盈, 孟银灿, 刘美玲. 烟气脱汞活性炭干粉喷射实验及喷射效果数值模拟[J]. 中国电力, 2019, 52(10): 138-143,170. |
[10] | 佘晓利, 潘卫国, 王程瑶, 倪迎春, 秦岭. 脱硫废水旁路塔雾化蒸发数值模拟[J]. 中国电力, 2019, 52(1): 129-136. |
[11] | 周玲妹, 张冠军, 朱宪然, 李皓宇, 焦开明. 600 MW机组锅炉掺烧劣质煤技术经济性研究[J]. 中国电力, 2018, 51(9): 1-7. |
[12] | 马君华, 陆一鸣, 袁文广, 王磊, 黄文瑞, 延星. 能源互联网评价体系研究[J]. 中国电力, 2018, 51(8): 38-42. |
[13] | 雷鉴琦. 降低燃煤机组SCR脱硝系统催化剂磨损的流场优化[J]. 中国电力, 2018, 51(7): 152-156,169. |
[14] | 杨来顺, 徐明海, 陈秋实. 管式除雾器开孔对除雾性能影响的数值模拟研究[J]. 中国电力, 2018, 51(7): 178-184. |
[15] | 叶侠丰, 丁红蕾, 潘卫国, 潘衍行. 带拓展面椭圆管束的换热、积灰及磨损特性研究[J]. 中国电力, 2018, 51(6): 26-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||