中国电力 ›› 2024, Vol. 57 ›› Issue (1): 219-229.DOI: 10.11930/j.issn.1004-9649.202304081
• 面向碳达峰碳中和目标的清洁高效发电技术 • 上一篇 下一篇
葛铭1(), 姜志成2, 吕智嘉2, 王佳杨2, 仇召宏2, 张守玉3
收稿日期:
2023-04-23
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
葛铭(1991—),男,通信作者,硕士,工程师,从事电站锅炉燃烧优化调整、煤炭清洁利用研究,E-mail:gm0217@126.com
基金资助:
Ming GE1(), Zhicheng JIANG2, Zhijia LV2, Jiayang WANG2, Zhaohong QIU2, Shouyu ZHANG3
Received:
2023-04-23
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
针对1000 MW机组对冲锅炉存在的偏烧问题进行了试验研究,结果发现粉量不均是偏烧的主要原因。粉量分布、煤粉细度分布均呈现典型的间隔分布趋势,且两者分布呈正相关。粉量分布不均、煤粉细度的偏差以及二次风箱风量分配特性等因素共同造成了炉内偏烧。为缓解炉内偏烧,从煤粉细度、燃烧器配风、燃尽风摆角和贴壁风开度等方面进行了调整。试验发现,燃尽风开度和摆角调整对于炉内偏烧的影响最为明显。燃尽风开度减小、燃尽风摆角由中间向两侧摆动有助于缓解偏烧。通过调整,屏过出口汽温偏差由40 ℃降低到10 ℃以内,省煤器出口氧量最低点由调整前的低于1%提高到调整后不低于2%;CO浓度最高点由调整前的5000 μL/L以上降低到调整后的500 μL/L以下,使该机组偏烧问题得到大幅度缓解。
葛铭, 姜志成, 吕智嘉, 王佳杨, 仇召宏, 张守玉. 粉量分布不均对1000 MW机组对冲锅炉的影响及调整[J]. 中国电力, 2024, 57(1): 219-229.
Ming GE, Zhicheng JIANG, Zhijia LV, Jiayang WANG, Zhaohong QIU, Shouyu ZHANG. The Influence of Unevenly Distributed Powder on a 1000 MW Opposed Firing Boiler and the Counter Measures[J]. Electric Power, 2024, 57(1): 219-229.
a) A磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 77 | 128 | 60 | |||
2 | 70 | 120 | 60 | |||
3 | 65 | 128 | 60 | |||
4 | 70 | 120 | 70 | |||
5 | 70 | 120 | 75 | |||
b) B磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 60 | |||
2 | 65 | 120 | 60 | |||
3 | 70 | 120 | 60 | |||
4 | 60 | 120 | 65 | |||
5 | 60 | 120 | 70 | |||
6 | 60 | 125 | 60 | |||
7 | 60 | 130 | 60 | |||
c) C磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 60 | |||
2 | 65 | 120 | 60 | |||
3 | 70 | 120 | 60 | |||
4 | 60 | 120 | 70 | |||
5 | 60 | 125 | 60 | |||
6 | 60 | 130 | 60 | |||
d) D磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 77 | 128 | 60 | |||
2 | 77 | 128 | 70 | |||
3 | 77 | 128 | 75 | |||
4 | 70 | 128 | 60 | |||
5 | 65 | 128 | 60 | |||
6 | 70 | 120 | 60 | |||
7 | 70 | 115 | 60 | |||
e) E磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 55 | |||
2 | 60 | 120 | 60 | |||
3 | 60 | 120 | 65 | |||
4 | 65 | 120 | 60 | |||
5 | 70 | 120 | 60 | |||
6 | 60 | 126 | 60 | |||
7 | 60 | 130 | 60 | |||
f) F磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 60 | |||
2 | 60 | 120 | 70 | |||
3 | 65 | 120 | 60 | |||
4 | 70 | 120 | 60 | |||
5 | 70 | 125 | 60 |
表 1 制粉试验工况
Table 1 The conditions of pulverizing test on
a) A磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 77 | 128 | 60 | |||
2 | 70 | 120 | 60 | |||
3 | 65 | 128 | 60 | |||
4 | 70 | 120 | 70 | |||
5 | 70 | 120 | 75 | |||
b) B磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 60 | |||
2 | 65 | 120 | 60 | |||
3 | 70 | 120 | 60 | |||
4 | 60 | 120 | 65 | |||
5 | 60 | 120 | 70 | |||
6 | 60 | 125 | 60 | |||
7 | 60 | 130 | 60 | |||
c) C磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 60 | |||
2 | 65 | 120 | 60 | |||
3 | 70 | 120 | 60 | |||
4 | 60 | 120 | 70 | |||
5 | 60 | 125 | 60 | |||
6 | 60 | 130 | 60 | |||
d) D磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 77 | 128 | 60 | |||
2 | 77 | 128 | 70 | |||
3 | 77 | 128 | 75 | |||
4 | 70 | 128 | 60 | |||
5 | 65 | 128 | 60 | |||
6 | 70 | 120 | 60 | |||
7 | 70 | 115 | 60 | |||
e) E磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 55 | |||
2 | 60 | 120 | 60 | |||
3 | 60 | 120 | 65 | |||
4 | 65 | 120 | 60 | |||
5 | 70 | 120 | 60 | |||
6 | 60 | 126 | 60 | |||
7 | 60 | 130 | 60 | |||
f) F磨 | ||||||
工况 | 煤量/(t·h–1) | 通风量/(t·h–1) | 分离器转速/% | |||
1 | 60 | 120 | 60 | |||
2 | 60 | 120 | 70 | |||
3 | 65 | 120 | 60 | |||
4 | 70 | 120 | 60 | |||
5 | 70 | 125 | 60 |
磨煤机 | 粉量最大偏差/% | 煤粉细度R90最大值/% | ||
A磨 | +61.0 | 21.0 | ||
B磨 | –36.8 | 26.6 | ||
C磨 | +26.1 | 24.4 | ||
D磨 | +88.4 | 34.3 | ||
E磨 | +36.8 | 33.2 | ||
F磨 | +26.9 | 17.6 |
表 2 制粉系统试验结果
Table 2 The test results of pulverizing system
磨煤机 | 粉量最大偏差/% | 煤粉细度R90最大值/% | ||
A磨 | +61.0 | 21.0 | ||
B磨 | –36.8 | 26.6 | ||
C磨 | +26.1 | 24.4 | ||
D磨 | +88.4 | 34.3 | ||
E磨 | +36.8 | 33.2 | ||
F磨 | +26.9 | 17.6 |
负荷/MW | 试验前习惯开度/% | 试验后推荐开度/% | ||
1000 | 80 | 50 | ||
750 | 75 | 40 | ||
500 | 50 | 30 |
表 3 燃尽风开度推荐值
Table 3 The recommended opening of burning wind
负荷/MW | 试验前习惯开度/% | 试验后推荐开度/% | ||
1000 | 80 | 50 | ||
750 | 75 | 40 | ||
500 | 50 | 30 |
各层燃烧器 编号 | 中心风/ mm | 外旋风/ mm | 摆角/(°) | 内二/(°) | 外二/(°) |
I8 | 100 | 100 | +20 | — | — |
I7 | 100 | 100 | +20 | — | — |
I6 | 80 | 50 | +20 | — | — |
I5 | 80 | 50 | +20 | — | — |
I4 | 50 | 50 | –20 | — | — |
I3 | 50 | 50 | –20 | — | — |
I2 | 100 | 100 | –20 | — | — |
I1 | 100 | 100 | –20 | — | — |
H8 | 200 | 400 | — | — | — |
H7 | 200 | 400 | — | — | — |
H6 | 50 | 100 | — | — | — |
H5 | 50 | 100 | — | — | — |
H4 | 50 | 100 | — | — | — |
H3 | 50 | 100 | — | — | — |
H2 | 200 | 400 | — | — | — |
H1 | 200 | 400 | — | — | — |
C8 | 100 | — | — | 90 | 75 |
C7 | 100 | — | — | 90 | 75 |
C6 | 100 | — | — | 40 | 40 |
C5 | 100 | — | — | 40 | 40 |
C4 | 100 | — | — | 40 | 40 |
C3 | 100 | — | — | 40 | 40 |
C2 | 100 | — | — | 90 | 75 |
C1 | 100 | — | — | 90 | 75 |
B8 | 100 | — | — | 90 | 75 |
B7 | 90 | — | — | 90 | 75 |
B6 | 90 | — | — | 40 | 40 |
B5 | 90 | — | — | 40 | 40 |
B4 | 95 | — | — | 70 | 60 |
B3 | 100 | — | — | 70 | 60 |
B2 | 100 | — | — | 90 | 75 |
B1 | 100 | — | — | 90 | 75 |
A8 | — | — | — | 90 | 75 |
A7 | — | — | — | 90 | 75 |
A6 | — | — | — | 40 | 40 |
A5 | — | — | — | 40 | 40 |
A4 | — | — | — | 40 | 40 |
A3 | — | — | — | 40 | 40 |
A2 | — | — | — | 90 | 75 |
A1 | — | — | — | 90 | 75 |
表 4 前墙燃烧器风门开度
Table 4 The opening of burner damper on front wall
各层燃烧器 编号 | 中心风/ mm | 外旋风/ mm | 摆角/(°) | 内二/(°) | 外二/(°) |
I8 | 100 | 100 | +20 | — | — |
I7 | 100 | 100 | +20 | — | — |
I6 | 80 | 50 | +20 | — | — |
I5 | 80 | 50 | +20 | — | — |
I4 | 50 | 50 | –20 | — | — |
I3 | 50 | 50 | –20 | — | — |
I2 | 100 | 100 | –20 | — | — |
I1 | 100 | 100 | –20 | — | — |
H8 | 200 | 400 | — | — | — |
H7 | 200 | 400 | — | — | — |
H6 | 50 | 100 | — | — | — |
H5 | 50 | 100 | — | — | — |
H4 | 50 | 100 | — | — | — |
H3 | 50 | 100 | — | — | — |
H2 | 200 | 400 | — | — | — |
H1 | 200 | 400 | — | — | — |
C8 | 100 | — | — | 90 | 75 |
C7 | 100 | — | — | 90 | 75 |
C6 | 100 | — | — | 40 | 40 |
C5 | 100 | — | — | 40 | 40 |
C4 | 100 | — | — | 40 | 40 |
C3 | 100 | — | — | 40 | 40 |
C2 | 100 | — | — | 90 | 75 |
C1 | 100 | — | — | 90 | 75 |
B8 | 100 | — | — | 90 | 75 |
B7 | 90 | — | — | 90 | 75 |
B6 | 90 | — | — | 40 | 40 |
B5 | 90 | — | — | 40 | 40 |
B4 | 95 | — | — | 70 | 60 |
B3 | 100 | — | — | 70 | 60 |
B2 | 100 | — | — | 90 | 75 |
B1 | 100 | — | — | 90 | 75 |
A8 | — | — | — | 90 | 75 |
A7 | — | — | — | 90 | 75 |
A6 | — | — | — | 40 | 40 |
A5 | — | — | — | 40 | 40 |
A4 | — | — | — | 40 | 40 |
A3 | — | — | — | 40 | 40 |
A2 | — | — | — | 90 | 75 |
A1 | — | — | — | 90 | 75 |
各层燃烧器 编号 | 中心风/ mm | 外旋风/ mm | 摆角/(°) | 内二/(°) | 外二/(°) |
K8 | 100 | 100 | +20 | — | — |
K7 | 100 | 100 | +20 | — | — |
K6 | 80 | 50 | +20 | — | — |
K5 | 80 | 50 | +20 | — | — |
K4 | 50 | 50 | –20 | — | — |
K3 | 50 | 50 | –20 | — | — |
K2 | 100 | 100 | –20 | — | — |
K1 | 100 | 100 | –20 | — | — |
J8 | 200 | 400 | — | — | — |
J7 | 200 | 400 | — | — | — |
J6 | 50 | 100 | — | — | — |
J5 | 50 | 100 | — | — | — |
J4 | 50 | 100 | — | — | — |
J3 | 50 | 100 | — | — | — |
J2 | 200 | 400 | — | — | — |
J1 | 200 | 400 | — | — | — |
F8 | 100 | — | — | 90 | 75 |
F7 | 100 | — | — | 90 | 75 |
F6 | 100 | — | — | 40 | 40 |
F5 | 100 | — | — | 40 | 40 |
F4 | 100 | — | — | 40 | 40 |
F3 | 100 | — | — | 40 | 40 |
F2 | 100 | — | — | 90 | 75 |
F1 | 100 | — | — | 90 | 75 |
E8 | 90 | — | — | 90 | 75 |
E7 | 90 | — | — | 90 | 75 |
E6 | 90 | — | — | 40 | 40 |
E5 | 90 | — | — | 40 | 40 |
E4 | 100 | — | — | 40 | 40 |
E3 | 90 | — | — | 40 | 40 |
E2 | 90 | — | — | 90 | 75 |
E1 | 100 | — | — | 90 | 75 |
D8 | 100 | — | — | 90 | 75 |
D7 | 100 | — | — | 90 | 75 |
D6 | 100 | — | — | 40 | 40 |
D5 | 100 | — | — | 40 | 40 |
D4 | 100 | — | — | 40 | 40 |
D3 | 100 | — | — | 40 | 40 |
D2 | 100 | — | — | 90 | 75 |
D1 | 100 | — | — | 90 | 75 |
表 5 后墙燃烧器风门开度
Table 5 The opening of burner damper on back wall
各层燃烧器 编号 | 中心风/ mm | 外旋风/ mm | 摆角/(°) | 内二/(°) | 外二/(°) |
K8 | 100 | 100 | +20 | — | — |
K7 | 100 | 100 | +20 | — | — |
K6 | 80 | 50 | +20 | — | — |
K5 | 80 | 50 | +20 | — | — |
K4 | 50 | 50 | –20 | — | — |
K3 | 50 | 50 | –20 | — | — |
K2 | 100 | 100 | –20 | — | — |
K1 | 100 | 100 | –20 | — | — |
J8 | 200 | 400 | — | — | — |
J7 | 200 | 400 | — | — | — |
J6 | 50 | 100 | — | — | — |
J5 | 50 | 100 | — | — | — |
J4 | 50 | 100 | — | — | — |
J3 | 50 | 100 | — | — | — |
J2 | 200 | 400 | — | — | — |
J1 | 200 | 400 | — | — | — |
F8 | 100 | — | — | 90 | 75 |
F7 | 100 | — | — | 90 | 75 |
F6 | 100 | — | — | 40 | 40 |
F5 | 100 | — | — | 40 | 40 |
F4 | 100 | — | — | 40 | 40 |
F3 | 100 | — | — | 40 | 40 |
F2 | 100 | — | — | 90 | 75 |
F1 | 100 | — | — | 90 | 75 |
E8 | 90 | — | — | 90 | 75 |
E7 | 90 | — | — | 90 | 75 |
E6 | 90 | — | — | 40 | 40 |
E5 | 90 | — | — | 40 | 40 |
E4 | 100 | — | — | 40 | 40 |
E3 | 90 | — | — | 40 | 40 |
E2 | 90 | — | — | 90 | 75 |
E1 | 100 | — | — | 90 | 75 |
D8 | 100 | — | — | 90 | 75 |
D7 | 100 | — | — | 90 | 75 |
D6 | 100 | — | — | 40 | 40 |
D5 | 100 | — | — | 40 | 40 |
D4 | 100 | — | — | 40 | 40 |
D3 | 100 | — | — | 40 | 40 |
D2 | 100 | — | — | 90 | 75 |
D1 | 100 | — | — | 90 | 75 |
1 |
高嵩, 赵洁, 黄迪南. 1000 MW超超临界二次再热燃煤发电技术[J]. 中国电力, 2017, 50 (6): 6- 11.
DOI |
GAO Song, ZHAO Jie, HUANG Dinan. Double-reheat coal-fired power generation technologies for 1 000-MW ultra-supercritical units[J]. Electric Power, 2017, 50 (6): 6- 11.
DOI |
|
2 | 单葆国, 刘青, 张莉莉, 等. 新形势下“十四五”后三年中国电力需求形势研判[J]. 中国电力, 2023, 56 (3): 1- 11. |
SHAN Baoguo, LIU Qing, ZHANG Lili, et al. Analysis of China’s power demand situation in the last three years of the “14th five-year plan” under the new situation[J]. Electric Power, 2023, 56 (3): 1- 11. | |
3 | 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55 (5): 1- 11. |
ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China’s energy and power system[J]. Electric Power, 2022, 55 (5): 1- 11. | |
4 | 赵伶玲, 周强泰. 旋流燃烧器的稳燃及其结构优化分析[J]. 动力工程, 2006, 26 (1): 74- 80. |
ZHAO Lingling, ZHOU Qiangtai. Combustion stability of swirl burners and their structural optimization[J]. Journal of Power Engineering, 2006, 26 (1): 74- 80. | |
5 | 李长旭, 史志杰, 刘宇. 锅炉与侧煤仓一体化设计关键技术研究及应用[J]. 中国电力, 2019, 52 (12): 179- 184. |
LI Changxu, SHI Zhijie, LIU Yu. Research and application of integrated key technology design for boiler and side coal warehouse[J]. Electric Power, 2019, 52 (12): 179- 184. | |
6 |
袁益超, 刘聿拯, 陈之航. 大型电站锅炉烟温偏差与汽温偏差研究[J]. 锅炉技术, 2003, 34 (3): 15- 20.
DOI |
YUAN Yichao, LIU Yuzheng, CHEN Zhihang. A study on temperature deviation of flue gas and steam in large capacity utility boilers[J]. Boiler Technology, 2003, 34 (3): 15- 20.
DOI |
|
7 |
樊泉桂. 超临界及超超临界锅炉水冷壁壁温偏差研究[J]. 中国电力, 2006, 39 (5): 59- 63.
DOI |
FAN Quangui. Research on the water wall temperature excursion in the supercritical and ultra supercritical boilers[J]. Electric Power, 2006, 39 (5): 59- 63.
DOI |
|
8 | 张世宏, 刘正强, 聂鑫, 等. 超超临界1000 MW机组锅炉水冷壁壁温偏差计算分析及对策[J]. 热力发电, 2017, 46 (11): 44- 49. |
ZHANG Shihong, LIU Zhengqiang, NIE Xin, et al. Water wall temperature deviation of an ultra-supercritical 1 000 MW unit boiler: analysis and countermeasures[J]. Thermal Power Generation, 2017, 46 (11): 44- 49. | |
9 | 钟伟. 600 MW超临界旋流对冲锅炉降低热偏差燃烧调整[J]. 发电设备, 2020, 34 (4): 292- 296. |
ZHONG Wei. Combustion adjustment of 600 MW supercritical swirl hedge boiler to reduce thermal deviation[J]. Power Equipment, 2020, 34 (4): 292- 296. | |
10 | 樊泉桂, 由俊坤, 王宁. 中速磨煤机输粉管煤粉分配均匀性的试验研究[J]. 动力工程, 2007, 27 (4): 588- 591. |
FAN Quangui, YOU Junkun, WANG Ning. Experimental study on coal powder apportioning uniformity among conveying pipes of spheroidal roller mills & improvements[J]. Journal of Power Engineering, 2007, 27 (4): 588- 591. | |
11 | 武岳. W形火焰锅炉粉量均匀性优化特性研究[J]. 华电技术, 2018, 40 (1): 5- 9, 77. |
WU Yue. Study on characteristics of uniformity optimization on pulverized coal flow in a W-flame boiler[J]. Huadian Technology, 2018, 40 (1): 5- 9, 77. | |
12 | 刘富爽, 赵军, 胡寿根. 格栅型煤粉分配器气固两相流的数值模拟[J]. 节能技术, 2017, 35 (4): 326- 329, 334. |
LIU Fushuang, ZHAO Jun, HU Shougen. Numerical simulation of gas-solid two-phase flow in grille pulverized coal distributor[J]. Energy Conservation Technology, 2017, 35 (4): 326- 329, 334. | |
13 |
侯凡军, 张利孟, 刘景龙, 等. 直吹式制粉系统送粉管道粉量分配特性试验研究[J]. 山东电力技术, 2018, 45 (5): 61- 65.
DOI |
HOU Fanjun, ZHANG Limeng, LIU Jinglong, et al. Experimental study on the pulverized coal distribution characteristics in coal pipes of direct-firing type pulverizing system[J]. Shandong Electric Power, 2018, 45 (5): 61- 65.
DOI |
|
14 |
蔡新春, 邢杰, 刘成槐, 等. 神头一电厂捷制650t/h锅炉煤粉分配均匀性试验研究[J]. 中国电力, 2005, 38 (6): 42- 45.
DOI |
CAI Xinchun, XING Jie, LIU Chenghuai, et al. Testing research on pulverized coal distribution evenness for the Czechoslovakian-made 650 t/h boiler in Shentou No. 1 Power Plant[J]. Electric Power, 2005, 38 (6): 42- 45.
DOI |
|
15 |
傅勇强, 杨忠灿, 姚伟, 等. 侧煤仓布置对冲燃烧锅炉运行偏差的影响及对策研究[J]. 工业加热, 2021, 50 (4): 44- 47, 51.
DOI |
FU Yongqiang, YANG Zhongcan, YAO Wei, et al. Study on the influence of side coal bunker layout on operation deviation of counter-fired boiler and countermeasures[J]. Industrial Heating, 2021, 50 (4): 44- 47, 51.
DOI |
|
16 |
刘定坡, 杨培军, 冯扩磊, 等. 直吹式制粉系统风粉偏差对机组灵活性的影响[J]. 洁净煤技术, 2019, 25 (2): 139- 143.
DOI |
LIU Dingpo, YANG Peijun, FENG Kuolei, et al. Influence of air-powder distribution deviation of direct-blowing pulverizing system on unit operation flexibility[J]. Clean Coal Technology, 2019, 25 (2): 139- 143.
DOI |
|
17 |
王战锋, 吴东垠, 李淑宏. 一次风的风粉偏差对烟温偏斜影响的试验和理论研究[J]. 沈阳工程学院学报(自然科学版), 2020, 16 (1): 17- 24.
DOI |
WANG Zhanfeng, WU Dongyin, LI Shuhong. Experimental and theoretical study on the influence of wind and powder deviation of primary air on flue gas temperature deviation[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2020, 16 (1): 17- 24.
DOI |
|
18 |
周文台, 王克, 吕为智. 深度调峰下的再热汽温偏差调整试验研究[J]. 动力工程学报, 2019, 39 (9): 700- 704, 730.
DOI |
ZHOU Wentai, WANG Ke, LÜ Weizhi. Experimental study on deviation adjustment of reheat steam temperatures under deep peak shaving conditions[J]. Journal of Chinese Society of Power Engineering, 2019, 39 (9): 700- 704, 730.
DOI |
|
19 |
员盼锋, 顾江峰, 唐光晔, 等. 对冲直流锅炉水冷壁壁温偏差研究及治理[J]. 热力发电, 2021, 50 (6): 134- 140.
DOI |
YUN Panfeng, GU Jiangfeng, TANG Guangye, et al. Study and treatment of wall temperature deviation of water wall of opposed once through boiler[J]. Thermal Power Generation, 2021, 50 (6): 134- 140.
DOI |
|
20 | 宁志, 何金龟, 王小华, 等. 1000 MW超超临界机组锅炉再热蒸汽温度优化调整试验[J]. 热能动力工程, 2018, 33 (12): 111- 117. |
NING Zhi, HE Jingui, WANG Xiaohua, et al. Experimental study on the optimization of reheated steam temperature of 1 000 MW ultra supercritical unit boiler[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33 (12): 111- 117. | |
21 | 马启磊, 刘森, 张华磊, 等. 锅炉风箱二次风流量分配对燃烧特性的影响[J]. 热能动力工程, 2019, 34 (11): 52- 58, 88. |
MA Qilei, LIU Sen, ZHANG Hualei, et al. Influence of secondary air flow distribution of boiler bellows on combustion characteristics[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34 (11): 52- 58, 88. | |
22 | 王占平, 杨斌, 杨飞, 等. 电站锅炉直吹式制粉系统一次风速测量与调整[J]. 锅炉技术, 2017, 48 (3): 6- 10. |
WANG Zhanping, YANG Bin, YANG Fei, et al. Measurements and adjustments of primary air velocity for direct-firing pulverizing system of utility boiler[J]. Boiler Technology, 2017, 48 (3): 6- 10. | |
23 |
葛铭, 孙俊威, 戴维葆, 等. ZGM95K-Ⅱ型磨煤机煤粉细度和分配特性[J]. 洁净煤技术, 2019, 25 (S2): 72- 76.
DOI |
GE Ming, SUN Junwei, DAI Weibao, et al. Coal fineness and coal powder apportioning uniformity of ZGM95K-Ⅱ coal mill[J]. Clean Coal Technology, 2019, 25 (S2): 72- 76.
DOI |
|
24 |
葛铭, 刘龙, 孙俊威, 等. 双进双出磨煤机制粉系统优化试验研究[J]. 电力科技与环保, 2020, 36 (1): 57- 59.
DOI |
GE Ming, LIU Long, SUN Junwei, et al. Experimental study on the optimization of coal pulverizing system for double inlet and outlet tube mill[J]. Electric Power Technology and Environmental Protection, 2020, 36 (1): 57- 59.
DOI |
|
25 | 向炯, 王丹秋, 王硕. 锅炉一次风管道风粉在线均衡技术研究[J]. 电站系统工程, 2019, 35 (1): 23- 26. |
XIANG Jiong, WANG Danqiu, WANG Shuo. Research on online equalization technology of coal and air on primary air piping[J]. Power System Engineering, 2019, 35 (1): 23- 26. | |
26 | 石全成, 吕为智, 周文台, 等. 可调节煤粉分配器的风粉两相流动特性数值模拟[J]. 动力工程学报, 2022, 42 (12): 1183- 1190, 1205. |
SHI Quancheng, LÜ Weizhi, ZHOU Wentai, et al. Numerical simulation of two-phase flow characteristics of pulverized coal distributor[J]. Journal of Chinese Society of Power Engineering, 2022, 42 (12): 1183- 1190, 1205. | |
27 |
薛飞宇, 韩健民, 梁双印. 电站锅炉双可调煤粉分配器气固两相流动特性研究[J]. 动力工程学报, 2021, 41 (12): 1033- 1039, 1108.
DOI |
XUE Feiyu, HAN Jianmin, LIANG Shuangyin. Research on gas-solid two-phase flow characteristics of double-adjustable pulverized coal distributors in power station boilers[J]. Journal of Chinese Society of Power Engineering, 2021, 41 (12): 1033- 1039, 1108.
DOI |
|
28 | 林华. 风粉阻力偏差对锅炉燃烧特性的影响[J]. 发电设备, 2021, 35 (1): 22- 26. |
LIN Hua. Influence of air-powder distribution deviation on combustion characteristics of the boiler[J]. Power Equipment, 2021, 35 (1): 22- 26. | |
29 |
周平, 张广才, 严晓勇, 等. 600 MW机组对冲燃煤锅炉尾部CO浓度偏高的调整试验[J]. 热力发电, 2014, 43 (12): 82- 88.
DOI |
ZHOU Ping, ZHANG Guangcai, YAN Xiaoyong, et al. Operation optimization on high CO emissions of a 600 MW unit swirl-opposed firing boiler after low-NOx burner retrofitting[J]. Thermal Power Generation, 2014, 43 (12): 82- 88.
DOI |
[1] | 李长旭, 史志杰, 刘宇. 锅炉与侧煤仓一体化设计关键技术研究及应用[J]. 中国电力, 2019, 52(12): 179-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||