中国电力 ›› 2017, Vol. 50 ›› Issue (1): 140-145.DOI: 10.11930/j.issn.1004-9649.2017.01.140.06

• 新能源 • 上一篇    下一篇

基于t Location-Scale分布的风电功率概率预测研究

杨茂, 杜刚   

  1. 东北电力大学 电气工程学院,吉林 吉林 132012
  • 收稿日期:2016-10-20 出版日期:2017-01-20 发布日期:2017-01-23
  • 作者简介:杨茂(1982-),男,吉林市人,博士,副教授,研究方向为风力发电技术。E-mail: yangmao820@163.com
  • 基金资助:
    国家重点基础研究发展计划项目(973计划)(2013CB228201); 国家自然科学基金(51307017); 吉林省科技发展计划项目(20140520129JH); 吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2014]第474号); 吉林省产业技术研究与开发专项项目(2014Y124)

Wind Power Probability Prediction Based on t Location-Scale Distrabution

YANG Mao, DU Gang   

  1. College of Electrical Engineering, Northeast Dianli University, Jilin 132012, China
  • Received:2016-10-20 Online:2017-01-20 Published:2017-01-23
  • Supported by:
    This work is supported by the National Major Basic Research Program (973 Program) (No. 2013CB228201)the National Natural Science Foundation of China(No. 51307017)the Scientific, Technological Planning Project of Jilin Province(No. 20140520129JH)The “12th Five-Year Plan”Scientific and Technological Research Project for Education Department of Jilin Province (Ji Jiao Ke He Zi[2014] No. 474)Industrial Technology Research and Development for Special Project of Jilin Province (No. 2014Y124).

摘要: 风电功率特有的随机波动性,导致风电功率点预测方法的预测精度不高,增加了风电并网的难度,致使风电场弃风现象严重。基于风电功率点预测的基础上,风电功率概率预测可以预测出风电功率的波动范围,为电力系统的安全运行以及电网调度运行给出不确定信息和可靠性评估依据。提出了一种基于t location- scale分布的风电功率概率预测方法,即采用t location-scale函数来描述风电功率预测误差概率分布,并以此建立误差分布,基于已建立的误差分布可以进行概率预测。并引进了覆盖率和平均带宽来评价预测区间的优劣程度。利用吉林省西部某风电场历史数据验证了该方法的可靠性。

关键词: 风电, 风电功率, 弃风, 风电并网, 风功率预测

Abstract: Wind power forecasting is difficult because of its stochastic variance characteristic. Based on t location-scale distribution function, a wind power forecasting method is proposed. The t location-scale function is adopted to describe probabilistic distribution of wind power prediction error. The prediction is then performed based on the distribution model. The coverage rate and average bandwidth are selected to evaluate prediction accuracy. The historic data of power fluctuation of a wind farm in Jinlin province proves the effectiveness of proposed method.

Key words: wind electricity, wind power, wind abandoning, wind power integration, wind power prediction

中图分类号: