Electric Power ›› 2025, Vol. 58 ›› Issue (1): 128-140.DOI: 10.11930/j.issn.1004-9649.202404018
• New-type Power Grid • Previous Articles Next Articles
					
													Ling LU1,2(
), Tao YUAN1(
), Bo YANG3(
), Xin LI1,2(
), Yang LU1, Qiuping PU1, Xin ZHANG1
												  
						
						
						
					
				
Received:2024-04-01
															
							
															
							
																	Accepted:2024-06-30
															
							
																	Online:2025-01-23
															
							
							
																	Published:2025-01-28
															
							
						Supported by:Ling LU, Tao YUAN, Bo YANG, Xin LI, Yang LU, Qiuping PU, Xin ZHANG. Two-Layer Optimization of Regional Integrated Energy System Considering Exergy Efficiency and Multiple Uncertainties[J]. Electric Power, 2025, 58(1): 128-140.
| 能量类型 | 品质系数 | |
| 电能 | 1.00 | |
| 天然气 | 0.51 | |
| 热能 | 0.10~0.20 | |
| 冷能 | 0.05~0.08 | 
Table 1 Energy quality coefficient
| 能量类型 | 品质系数 | |
| 电能 | 1.00 | |
| 天然气 | 0.51 | |
| 热能 | 0.10~0.20 | |
| 冷能 | 0.05~0.08 | 
| 时段 | 电价/ (元·(kW·h)–1)  | 天然气价格/ (元·m–3)  | 碳税/ (元·(kgCO2)–1)  | |||
| 10:00—14:00 | 1.040 | 2.37 | 0.23 | |||
| 19:00—22:00 | ||||||
| 00:00—07:00 | 0.315 | |||||
| 23:00—24:00 | ||||||
| 其他 | 0.630 | 
Table 2 Price parameters
| 时段 | 电价/ (元·(kW·h)–1)  | 天然气价格/ (元·m–3)  | 碳税/ (元·(kgCO2)–1)  | |||
| 10:00—14:00 | 1.040 | 2.37 | 0.23 | |||
| 19:00—22:00 | ||||||
| 00:00—07:00 | 0.315 | |||||
| 23:00—24:00 | ||||||
| 其他 | 0.630 | 
| 设备 | 能源转换效率 | 㶲效率 | 单位成本/ (元·(kW)–1)  | 运维成本/ (元·(kW·h)–1)  | ||||
| WT | 0.32 | 1.000 | 0.030 | |||||
| PV | 0.16 | 1.000 | 0.030 | |||||
| STC | 0.60 | 1.000 | 0.030 | |||||
| CCHP | 0.88 | 0.745 | 0.300 | |||||
| PtG | 0.60 | 0.306 | 0.150 | |||||
| EB | 0.95 | 0.190 | 0.032 | |||||
| GB | 0.85 | 0.283 | 850 | 0.020 | ||||
| AC | 0.85 | 0.295 | 0.042 | |||||
| EC | 3.00 | 0.245 | 0.077 | 
Table 3 Parameters of equipment
| 设备 | 能源转换效率 | 㶲效率 | 单位成本/ (元·(kW)–1)  | 运维成本/ (元·(kW·h)–1)  | ||||
| WT | 0.32 | 1.000 | 0.030 | |||||
| PV | 0.16 | 1.000 | 0.030 | |||||
| STC | 0.60 | 1.000 | 0.030 | |||||
| CCHP | 0.88 | 0.745 | 0.300 | |||||
| PtG | 0.60 | 0.306 | 0.150 | |||||
| EB | 0.95 | 0.190 | 0.032 | |||||
| GB | 0.85 | 0.283 | 850 | 0.020 | ||||
| AC | 0.85 | 0.295 | 0.042 | |||||
| EC | 3.00 | 0.245 | 0.077 | 
| 项目 | 方案1 | 方案2 | 方案3 | 方案4 | ||||
| 运维成本/元 | ||||||||
| 能耗成本/元 | ||||||||
| 碳排放成本/元 | ||||||||
| 运行成本/元 | ||||||||
| 投资成本/元 | ||||||||
| 总成本/元 | ||||||||
| 㶲效率/% | 63.59 | 60.42 | 69.59 | 66.89 | ||||
| 能源利用效率/% | 80.79 | 87.85 | 83.04 | 87.03 | 
Table 4 Comparison of economy and energy efficiency under different schemes
| 项目 | 方案1 | 方案2 | 方案3 | 方案4 | ||||
| 运维成本/元 | ||||||||
| 能耗成本/元 | ||||||||
| 碳排放成本/元 | ||||||||
| 运行成本/元 | ||||||||
| 投资成本/元 | ||||||||
| 总成本/元 | ||||||||
| 㶲效率/% | 63.59 | 60.42 | 69.59 | 66.89 | ||||
| 能源利用效率/% | 80.79 | 87.85 | 83.04 | 87.03 | 
| 成本类型 | 区间/元 | 区间平 均值/元  | 区间宽度/ 元  | 相对区 间差/%  | ||||
| 碳排放成本 | [ | 43.4 | ||||||
| 能耗成本 | [ | 37.0 | ||||||
| 运维成本 | [ | 16.1 | ||||||
| 运行成本 | [ | 31.0 | ||||||
| 投资成本 | [ | 4.8 | ||||||
| 总成本 | [ | 24.5 | 
Table 5 Economic results of interval optimization operation
| 成本类型 | 区间/元 | 区间平 均值/元  | 区间宽度/ 元  | 相对区 间差/%  | ||||
| 碳排放成本 | [ | 43.4 | ||||||
| 能耗成本 | [ | 37.0 | ||||||
| 运维成本 | [ | 16.1 | ||||||
| 运行成本 | [ | 31.0 | ||||||
| 投资成本 | [ | 4.8 | ||||||
| 总成本 | [ | 24.5 | 
| 项目 | 区间 | 区间平 均值  | 区间宽度 | 相对区 间差  | ||||
| 能源利用效率 | [86.52, 87.53] | 87.025 | 1.01 | 1.15 | ||||
| 㶲效率 | [64.19, 67.78] | 65.985 | 3.59 | 5.30 | 
Table 6 Energy efficiency results of interval optimization operation 单位:%
| 项目 | 区间 | 区间平 均值  | 区间宽度 | 相对区 间差  | ||||
| 能源利用效率 | [86.52, 87.53] | 87.025 | 1.01 | 1.15 | ||||
| 㶲效率 | [64.19, 67.78] | 65.985 | 3.59 | 5.30 | 
| 波动类型 | 碳排放 成本  | 能耗 成本  | 运维 成本  | 运行 成本  | 投资 成本  | 总成本 | 㶲效率 | |||||||
| 电价波动EP | 0.69 | 8.86 | 1.88 | 7.60 | 0.28 | 6.09 | 0.23 | |||||||
| 电负荷波动EL | 18.24 | 14.26 | 1.60 | 12.74 | 0.55 | 10.06 | 7.39 | |||||||
| 气价波动GP | 0.68 | 5.38 | 1.56 | 4.29 | 0.15 | 3.42 | 0.06 | |||||||
| 气负荷波动GL | 3.45 | 2.32 | 6.00 | 1.24 | 0.72 | 0.43 | 0.37 | 
Table 7 The relative interval difference under the fluctuation of one single uncertain factor 单位:%
| 波动类型 | 碳排放 成本  | 能耗 成本  | 运维 成本  | 运行 成本  | 投资 成本  | 总成本 | 㶲效率 | |||||||
| 电价波动EP | 0.69 | 8.86 | 1.88 | 7.60 | 0.28 | 6.09 | 0.23 | |||||||
| 电负荷波动EL | 18.24 | 14.26 | 1.60 | 12.74 | 0.55 | 10.06 | 7.39 | |||||||
| 气价波动GP | 0.68 | 5.38 | 1.56 | 4.29 | 0.15 | 3.42 | 0.06 | |||||||
| 气负荷波动GL | 3.45 | 2.32 | 6.00 | 1.24 | 0.72 | 0.43 | 0.37 | 
| 1 | 吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41 (12): 4001- 4021. | 
| LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Review on district-level integrated energy system planning considering interconnection and interaction[J]. Proceedings of the CSEE, 2021, 41 (12): 4001- 4021. | |
| 2 | 张海静, 杨雍琦, 赵昕, 等. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54 (4): 141- 150. | 
| ZHANG Haijing, YANG Yongqi, ZHAO Xin, et al. Two-level optimal dispatching strategy for regional integrated energy system considering demand response[J]. Electric Power, 2021, 54 (4): 141- 150. | |
| 3 | 赵乃新, 顾文波, 美合日阿依·穆太力普. 考虑低碳经济运行的四联供综合能源系统优化调度[J]. 热力发电, 2023, 52 (4): 54- 62. | 
| ZHAO Naixin, GU Wenbo, Meiheriayi MUTAILIPU. Optimial dispatching of electricity-gas-heat-cooling integrated energy system considering low-carbon economy[J]. Thermal Power Generation, 2023, 52 (4): 54- 62. | |
| 4 | 李欣, 刘立, 黄婧琪, 等. 含耦合P2G和CCS的园区级综合能源系统优化调度[J]. 电力系统及其自动化学报, 2023, 35 (4): 18- 25. | 
| LI Xin, LIU Li, HUANG Jingqi, et al. Optimal scheduling of park-level integrated energy system with coupling of P2G and CCS[J]. Proceedings of the CSU-EPSA, 2023, 35 (4): 18- 25. | |
| 5 | 国家市场监督管理总局, 国家标准化管理委员会. 能量系统 分析技术导则: GB/T 14909—2021[S]. 北京: 中国标准出版社, 2021. | 
| 6 | 胡枭, 李少伦, 王丹, 等. 㶲在综合能源系统中的理论、模型、应用综述及展望[J]. 电力建设, 2024, 45 (03): 1- 15. | 
| HU Xiao, LI Shaolun, WANG Dan, et al. Review and prospect of exergy in theory, modelling, and applications of integrated energy systems[J]. Electric Power Construction, 2024, 45 (03): 1- 15. | |
| 7 | 胡枭. 考虑能量品质的区域综合能源系统优化规划研究[D]. 上海上海交通大学, 2020. | 
| HU Xiao. Research on optimal planning of regional integrated energy systems considering energy quality[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
| 8 | 田立亭, 程林, 李荣, 等. 基于加权有向图的园区综合能源系统多场景能效评价方法[J]. 中国电机工程学报, 2019, 39 (22): 6471- 6483. | 
| TIAN Liting, CHENG Lin, LI Rong, et al. A multi-scenario energy efficiency evaluation method for district multi-energy systems based on weighted directed graph[J]. Proceedings of the CSEE, 2019, 39 (22): 6471- 6483. | |
| 9 |  
											SU H L, HUANG Q F, WANG Z D. An energy efficiency index formation and analysis of integrated energy system based on exergy efficiency[J]. Frontiers in Energy Research, 2021, 9, 723647. 
																							 DOI  | 
										
| 10 | 何帅, 刘念, 盛超群, 等. 多能源枢纽联合运行的? 损最小化分布式优化调度[J]. 电力系统自动化, 2021, 45 (9): 28- 37. | 
| HE Shuai, LIU Nian, SHENG Chaoqun, et al. Distributed optimal scheduling for minimizing exergy loss based on joint operation of multiple energy hubs[J]. Automation of Electric Power Systems, 2021, 45 (9): 28- 37. | |
| 11 | 陈聪, 沈欣炜, 夏天, 等. 计及效率的综合能源系统多目标优化调度方法[J]. 电力系统自动化, 2019, 43 (12): 60- 67, 121. | 
| CHEN Cong, SHEN Xinwei, XIA Tian, et al. Multi-objective optimal dispatch method for integrated energy system considering exergy efficiency[J]. Automation of Electric Power Systems, 2019, 43 (12): 60- 67, 121. | |
| 12 |  
											WANG Y L, HUANG F F, TAO S Y, et al. Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy[J]. Applied Energy, 2022, 306, 118120. 
																							 DOI  | 
										
| 13 | 王丹, 周天烁, 李家熙, 贾宏杰. 面向能源转型的高(火用)综合能源系统理论与应用[J]. 电力系统自动化, 2022, 46 (17): 114- 131. | 
| WANG Dan, ZHOU Tianshuo, LI Jiaxi, et al. Theory and application of high-exergy integrated energy system for energy transition[J]. Automation of Electric Power Systems, 2022, 46 (17): 114- 131. | |
| 14 | 张敏, 王金浩, 常潇, 等. 考虑可再生能源不确定性的热-电耦合微能源系统多目标鲁棒规划方法[J]. 中国电力, 2021, 54 (4): 119- 129, 140. | 
| ZHANG Min, WANG Jinhao, CHANG Xiao, et al. A multi-objective robust planning method for thermal-electrical coupling micro-energy system considering the uncertainty of renewable energy[J]. Electric Power, 2021, 54 (4): 119- 129, 140. | |
| 15 | 杜永峰. 计及风光不确定性的电气热综合能源系统日前区间优化[J]. 热力发电, 2022, 51 (2): 85- 91. | 
| DU Yongfeng. Day-ahead interval optimization of electricity-gas-heat integrated energy system considering uncertainty of wind and PV[J]. Thermal Power Generation, 2022, 51 (2): 85- 91. | |
| 16 |  
											徐楠, 赵子豪, 张丹阳, 等. 双碳目标下考虑风光不确定性的综合能源系统规划研究[J]. 可再生能源, 2023, 41 (2): 236- 242. 
																							 DOI  | 
										
|  
											XU Nan, ZHAO Zihao, ZHANG Danyang, et al. Research on integrated energy system planning considering wind and solar uncertainty under dual-carbon target[J]. Renewable Energy Resources, 2023, 41 (2): 236- 242. 
																							 DOI  | 
										|
| 17 | 郭祚刚, 徐敏, 于浩, 等. 考虑多重不确定性的园区综合能源系统区间优化调度[J]. 中国电力, 2022, 55 (11): 121- 128, 141. | 
| GUO Zuogang, XU Min, YU Hao, et al. Interval optimal dispatching of community integrated energy system considering multiple uncertainties[J]. Electric Power, 2022, 55 (11): 121- 128, 141. | |
| 18 | 曾贤强, 张警卫, 王晓兰. 计及多重不确定性及光热电站参与的区域综合能源系统配置与运行联合优化[J]. 高电压技术, 2023, 49 (1): 353- 363. | 
| ZENG Xianqiang, ZHANG Jingwei, WANG Xiaolan, et al. Optimal Configuration of Regional Integrated Energy System Taking Into Account Multiple Uncertainties and the Participation of Concentrating Solar Power Stations[J]. High Voltage Engineering, 2023, 49 (1): 353- 363. | |
| 19 | 仇知, 王蓓蓓, 贲树俊, 等. 计及不确定性的区域综合能源系统双层优化配置规划模型[J]. 电力自动化设备, 2019, 39 (8): 176- 185. | 
| QIU Zhi, WANG Beibei, BEN Shujun, et al. Bi-level optimal configuration planning model of regional integrated energy system considering uncertainties[J]. Electric Power Automation Equipment, 2019, 39 (8): 176- 185. | |
| 20 | 崔杨, 郭福音, 仲悟之, 等. 多重不确定性环境下的综合能源系统区间多目标优化调度[J]. 电网技术, 2022, 46 (8): 2964- 2975. | 
| CUI Yang, GUO Fuyin, ZHONG Wuzhi, et al. Interval multi-objective optimal dispatch of integrated energy system under multiple uncertainty environment[J]. Power System Technology, 2022, 46 (8): 2964- 2975. | |
| 21 | 程杉, 程颖, 贺彩, 等. 考虑不确定性的配电网-多综合能源系统分布式协同规划[J]. 电力自动化设备, 2024, 44 (11): 24- 32. | 
| CHENG Shan, CHENG Ying, HE Cai, et al. Electric distributed collaborative planning of distribution network-multiple integrated energy systems considering uncertainty[J]. Power Automation Equipment, 2024, 44 (11): 24- 32. | |
| 22 | 邓倩文, 李奇, 邱宜彬, 等. 考虑多类型灵活性资源联合运行的综合能源系统优化配置方法[J/OL]. 上海交通大学学报, 1–24[2024-04-20. https://doi.org/ 10.16183/ j.cnki.jsjtu.2023.457. | 
| DENG Qianwen, LI Qi, QIU Yibin, et al. Optimal allocation method of integrated energy system considering joint operation of multi-type flexible resources[J/OL]. Journal of Shanghai Jiaotong University: 1–24 [2024-04-20]. https://doi.org/10.16183/j.cnki.jsjtu.2023.457. | |
| 23 | 袁铁江, 曹继雷. 计及风电-负荷不确定性的风氢低碳能源系统容量优化配置[J]. 高电压技术, 2022, 48 (6): 2037- 2044. | 
| YUAN Tiejiang, CAO Jilei. Capacity optimization allocation of wind hydrogen low-carbon energy system considering wind power-load uncertainty[J]. High Voltage Engineering, 2022, 48 (6): 2037- 2044. | |
| 24 | 周星球, 郑凌蔚, 杨兰, 等. 考虑多重不确定性的综合能源系统日前优化调度[J]. 电网技术, 2020, 44 (7): 2466- 2473. | 
| ZHOU Xingqiu, ZHENG Lingwei, YANG Lan, et al. Day-ahead optimal dispatch of an integrated energy system considering multiple uncertainty[J]. Power System Technology, 2020, 44 (7): 2466- 2473. | |
| 25 | 尚文强, 李广磊, 丁月明, 等. 考虑源荷不确定性和新能源消纳的综合能源系统协同调度方法[J]. 电网技术, 2024, 48 (2): 517- 532. | 
| SHANG Wenqiang, LI Guanglei, DING Yueming, et al. Collaborative scheduling for integrated energy system considering uncertainty of source load and absorption of new energy[J]. Power System Technology, 2024, 48 (2): 517- 532. | |
| 26 | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42 (4): 11- 24. | 
| YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: review and prospect[J]. Automation of Electric Power Systems, 2018, 42 (4): 11- 24. | |
| 27 | 胡枭, 尚策, 陈东文, 等. 考虑能量品质的区域综合能源系统多目标规划方法[J]. 电力系统自动化, 2019, 43 (19): 22- 31, 139. | 
| HU Xiao, SHANG Ce, CHEN Dongwen, et al. Multi-objective planning method for regional integrated energy systems considering energy quality[J]. Automation of Electric Power Systems, 2019, 43 (19): 22- 31, 139. | |
| 28 | 鲁玲, 苑涛, 王敏, 等. 考虑(火用)效率的区域综合能源系统配置与调度双层优化[J]. 可再生能源, 2024, 42 (10): 1381- 1389. | 
| LU Ling, YUAN Tao, WANG Min, et al. Two-layer optimization of regional integrated energy system configuration and dispatching considering exergy efficiency[J]. Renewable Energy Resources, 2024, 42 (10): 1381- 1389. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
