Electric Power ›› 2025, Vol. 58 ›› Issue (12): 73-85.DOI: 10.11930/j.issn.1004-9649.202502060
• Key Technologies for Resilient Urban Energy Systems Integrating Massive Distributed Flexible Resources • Previous Articles Next Articles
JIA Dongli1(
), LIU Jiajing1(
), ZHAN Huiyu1(
), WANG Huanchang1,2(
), BU Qiangsheng3(
)
Received:2025-02-25
Revised:2025-11-06
Online:2025-12-27
Published:2025-12-28
Supported by:JIA Dongli, LIU Jiajing, ZHAN Huiyu, WANG Huanchang, BU Qiangsheng. Collaborative Configuration of Multi-temporal and Spatial Flexible Resources in New Distribution Systems Considering Operational Risks[J]. Electric Power, 2025, 58(12): 73-85.
| 灵活性 资源 | 特性分析 | 适合参与调节的时间尺度 | ||||
| 上级主网 | 多为燃煤机组供电,调节速率较慢 | 15 min~1 h | ||||
| GT | FTGT | 调节速率较快,快速启停,频繁启停下仍能保持可靠性和耐久性 | 1~30 min | |||
| MGT | 调节速率较慢,启停较快,但耐受应力能力差,不能频繁启停 | 15 min~1 h | ||||
| ESS | SC | 可快速动态响应、循环寿命长、充放电效率高,但容量密度较小 | 1~15 min | |||
| BES | 容量密度大、造价低,但响应速度慢,循环寿命短 | 15~30 min | ||||
| DR | IE | 需要提前与用户签订合同进行约束,响应速度较快,但其调节资源的大小与用户用电负荷有关 | 1~15 min | |||
Table 1 Analysis of temporal flexible resources
| 灵活性 资源 | 特性分析 | 适合参与调节的时间尺度 | ||||
| 上级主网 | 多为燃煤机组供电,调节速率较慢 | 15 min~1 h | ||||
| GT | FTGT | 调节速率较快,快速启停,频繁启停下仍能保持可靠性和耐久性 | 1~30 min | |||
| MGT | 调节速率较慢,启停较快,但耐受应力能力差,不能频繁启停 | 15 min~1 h | ||||
| ESS | SC | 可快速动态响应、循环寿命长、充放电效率高,但容量密度较小 | 1~15 min | |||
| BES | 容量密度大、造价低,但响应速度慢,循环寿命短 | 15~30 min | ||||
| DR | IE | 需要提前与用户签订合同进行约束,响应速度较快,但其调节资源的大小与用户用电负荷有关 | 1~15 min | |||
| 参数 | 数值 | 参数 | 数值 | |||
| d/% | 8 | BES | 10 | |||
| FTGT | 10 | |||||
| CCGT | FTGT | |||||
| SC | CCGT | |||||
| SC | SC | 500 | ||||
| BES | BES | 600 | ||||
| BES | SC | |||||
| BES | ||||||
| FTGT | 15 | 800 | ||||
| CCGT | 20 | CCGT | 1 | |||
| SC | 20 | FTGT | 0.5 | |||
| BES | 10 | CCGT | 2 | |||
| 20 | FTGT | 1 | ||||
| 0.01 | FTGT | 0.4 | ||||
| 0.01 | CCGT | 0.45 | ||||
| 0.01 | ||||||
| FTGT | 10 | |||||
| CCGT | 10 | FTGT | ||||
| SC | 10 | FTGT | ||||
| BES | 10 | CCGT | ||||
| SC | 10 | CCGT | 800 | |||
| 900 | 300 | |||||
| SC | 0.95 | 1.03 | ||||
| SC | 0.95 | 0.97 | ||||
| BES | 0.9 | 0.35 | ||||
| BES | 0.9 | 0.36 | ||||
| SC | 0.95 | 0.36 | ||||
| SC | 0.05 | 2.91 | ||||
| BES | 0.90 | CCGT | 0.4 | |||
| BES | 0.10 | FTGT | 0.35 | |||
Table 2 Relevant Parameters
| 参数 | 数值 | 参数 | 数值 | |||
| d/% | 8 | BES | 10 | |||
| FTGT | 10 | |||||
| CCGT | FTGT | |||||
| SC | CCGT | |||||
| SC | SC | 500 | ||||
| BES | BES | 600 | ||||
| BES | SC | |||||
| BES | ||||||
| FTGT | 15 | 800 | ||||
| CCGT | 20 | CCGT | 1 | |||
| SC | 20 | FTGT | 0.5 | |||
| BES | 10 | CCGT | 2 | |||
| 20 | FTGT | 1 | ||||
| 0.01 | FTGT | 0.4 | ||||
| 0.01 | CCGT | 0.45 | ||||
| 0.01 | ||||||
| FTGT | 10 | |||||
| CCGT | 10 | FTGT | ||||
| SC | 10 | FTGT | ||||
| BES | 10 | CCGT | ||||
| SC | 10 | CCGT | 800 | |||
| 900 | 300 | |||||
| SC | 0.95 | 1.03 | ||||
| SC | 0.95 | 0.97 | ||||
| BES | 0.9 | 0.35 | ||||
| BES | 0.9 | 0.36 | ||||
| SC | 0.95 | 0.36 | ||||
| SC | 0.05 | 2.91 | ||||
| BES | 0.90 | CCGT | 0.4 | |||
| BES | 0.10 | FTGT | 0.35 | |||
| 模式 | FTGT(节点) 容量/kW | MGT(节点) 容量/kW | BES(节点)容 量/(kW, kW·h) | SC(节点)容 量/(kW, kW·h) | SOP(位置)容 量/(kV·A) | CESS,inv/ 万元 | CGT,inv/ 万元 | CSOP,inv/ 万元 | Cope/ 万元 | 年综合成 本/万元 | ||||||||||
| 1 | ||||||||||||||||||||
| 2 | (15)320 | (17) | (31)(330, 710) | (12)(420, 200) | 65.7 | 38.8 | ||||||||||||||
| 3 | (13)270 | (13) | (13)(280, 680) | (13)(330, 180) | (TS5)500 | 58.7 | 32.7 | 50.9 | ||||||||||||
| 4 | (13)300 | (13) | (13)(300, 720) | (13)(340, 300) | (TS5)500 | 61.9 | 34.2 | 50.9 |
Table 3 Configuration schemes under different modes
| 模式 | FTGT(节点) 容量/kW | MGT(节点) 容量/kW | BES(节点)容 量/(kW, kW·h) | SC(节点)容 量/(kW, kW·h) | SOP(位置)容 量/(kV·A) | CESS,inv/ 万元 | CGT,inv/ 万元 | CSOP,inv/ 万元 | Cope/ 万元 | 年综合成 本/万元 | ||||||||||
| 1 | ||||||||||||||||||||
| 2 | (15)320 | (17) | (31)(330, 710) | (12)(420, 200) | 65.7 | 38.8 | ||||||||||||||
| 3 | (13)270 | (13) | (13)(280, 680) | (13)(330, 180) | (TS5)500 | 58.7 | 32.7 | 50.9 | ||||||||||||
| 4 | (13)300 | (13) | (13)(300, 720) | (13)(340, 300) | (TS5)500 | 61.9 | 34.2 | 50.9 |
| 优化结果 | 模式1 | 模式2 | 模式3 | 模式4 | ||||
| 主网购电成本/万元 | 786.4 | 762.1 | 747.5 | |||||
| 网损成本/万元 | 31.6 | 28.4 | 25.1 | 24.6 | ||||
| GT运行成本/万元 | 0 | 279.5 | 238.4 | 251.5 | ||||
| DR补偿成本/万元 | 43.1 | 32.9 | 25.4 | 25.5 | ||||
| 弃风成本/万元 | 74.4 | 11.1 | 18.5 | 12.4 | ||||
| 总运行成本/万元 | ||||||||
| 运行成本风险/万元 | ||||||||
| 电压偏差风险 | 3.89 | 1.9 | 1.81 | 1.55 |
Table 4 Comparison of optimization results under different modes
| 优化结果 | 模式1 | 模式2 | 模式3 | 模式4 | ||||
| 主网购电成本/万元 | 786.4 | 762.1 | 747.5 | |||||
| 网损成本/万元 | 31.6 | 28.4 | 25.1 | 24.6 | ||||
| GT运行成本/万元 | 0 | 279.5 | 238.4 | 251.5 | ||||
| DR补偿成本/万元 | 43.1 | 32.9 | 25.4 | 25.5 | ||||
| 弃风成本/万元 | 74.4 | 11.1 | 18.5 | 12.4 | ||||
| 总运行成本/万元 | ||||||||
| 运行成本风险/万元 | ||||||||
| 电压偏差风险 | 3.89 | 1.9 | 1.81 | 1.55 |
| 1 |
舒印彪, 汤涌, 张正陵, 等. 新型配电网构建及其关键技术[J]. 中国电机工程学报, 2024, 44 (17): 6721- 6733.
|
|
SHU Yinbiao, TANG Yong, ZHANG Zhengling, et al. Construction of new distribution network and its key technologies[J]. Proceedings of the CSEE, 2024, 44 (17): 6721- 6733.
|
|
| 2 |
王伟, 朱江, 魏兴慎, 等. 面向新型配电系统的网络安全脆弱性评估[J]. 电力信息与通信技术, 2024, 22 (8): 37- 44.
|
|
WANG Wei, ZHU Jiang, WEI Xingshen, et al. Network security vulnerability assessment for new distribution systems[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 37- 44.
|
|
| 3 |
WANG K, WANG C F, ZHANG Z W, et al. Multi-timescale active distribution network optimal dispatching based on SMPC[J]. IEEE Transactions on Industry Applications, 2022, 58 (2): 1644- 1653.
|
| 4 |
ZAMZAM T, SHABAN K, GAOUDA A, et al. Performance assessment of two-timescale multi-objective volt/var optimization scheme considering EV charging stations, BESSs, and RESs in active distribution networks[J]. Electric Power Systems Research, 2022, 207, 107843.
|
| 5 |
韩宇, 周前, 李勇, 等. 户用光伏接入的低压配电网电能质量问题分析与附加损耗量化评估[J]. 电力科学与技术学报, 2024, 39 (3): 177- 186.
|
|
HAN Yu, ZHOU Qian, LI Yong, et al. Analysis of power quality issues and quantitative evaluation of additional losses in low voltage distribution networks connected to household photovoltaics[J]. Journal of Electric Power Science and Technology, 2024, 39 (3): 177- 186.
|
|
| 6 |
AZIZI A, VAHIDI B, NEMATOLLAHI A F. Reconfiguration of active distribution networks equipped with soft open points considering protection constraints[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11 (1): 212- 222.
|
| 7 | HE Y, WU H, BI R, et al. Coordinated planning of distributed generation and soft open points in active distribution network based on complete information dynamic game[J]. International Journal of Electrical Power & Energy Systems, 2022, 138, 107953. |
| 8 | 王洪坤, 王守相, 潘志新, 等. 含高渗透分布式电源配电网灵活性提升优化调度方法[J]. 电力系统自动化, 2018, 42 (15): 86- 93. |
| WANG Hongkun, WANG Shouxiang, PAN Zhixin, et al. Optimized dispatching method for flexibility improvement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems, 2018, 42 (15): 86- 93. | |
| 9 |
米伟铭, 叶鹏, 张明理, 等. 基于云模型的新型配电系统灵活性评估方法[J]. 电网技术, 2024, 48 (6): 2532- 2540.
|
|
MI Weiming, YE Peng, ZHANG Mingli, et al. Novel flexibility evaluation for distribution systems based on cloud models[J]. Power System Technology, 2024, 48 (6): 2532- 2540.
|
|
| 10 |
高万胜, 蔺红. 考虑配电网灵活性不足风险的分布鲁棒低碳优化调度[J]. 电力系统保护与控制, 2024, 52 (16): 49- 61.
|
|
GAO Wansheng, LIN Hong. Distributionally robust low-carbon optimal scheduling considering flexibility deficiency risk in a distribution network[J]. Power System Protection and Control, 2024, 52 (16): 49- 61.
|
|
| 11 |
OIKONOMOU K, PARVANIA M, KHATAMI R. Deliverable energy flexibility scheduling for active distribution networks[J]. IEEE Transactions on Smart Grid, 2020, 11 (1): 655- 664.
|
| 12 |
徐维炜, 陈红坤, 汤骏, 等. 计及配电网灵活性的峰谷电价分布鲁棒定价策略[J]. 电力自动化设备, 2024, 44 (12): 178- 186.
|
|
XU Weiwei, CHEN Hongkun, TANG Jun, et al. Distributionally robust pricing strategy of peak-valley electricity price[J]. Electric Power Automation Equipment, 2024, 44 (12): 178- 186.
|
|
| 13 |
ANWAR M B, QAZI H W, BURKE D J, et al. Harnessing the flexibility of demand-side resources[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 4151- 4163.
|
| 14 |
HARTWIG K, KOCKAR I. Impact of strategic behavior and ownership of energy storage on provision of flexibility[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 744- 754.
|
| 15 |
温丰瑞, 李华强, 温翔宇, 等. 主动配电网中计及灵活性不足风险的储能优化配置[J]. 电网技术, 2019, 43 (11): 3952- 3962.
|
|
WEN Fengrui, LI Huaqiang, WEN Xiangyu, et al. Optimal allocation of energy storage systems considering flexibility deficiency risk in active distribution network[J]. Power System Technology, 2019, 43 (11): 3952- 3962.
|
|
| 16 |
程杉, 傅桐, 李沣洋, 等. 含高渗透可再生能源的配电网灵活性供需协同规划[J]. 电力系统保护与控制, 2023, 51 (22): 1- 12.
|
|
CHENG Shan, FU Tong, LI Fengyang, et al. Flexible supply demand collaborative planning for distribution networks with high penetration of renewable energy[J]. Power System Protection and Control, 2023, 51 (22): 1- 12.
|
|
| 17 |
WANG C L, LIU C M, CHEN J, et al. Cooperative planning of renewable energy generation and multi-timescale flexible resources in active distribution networks[J]. Applied Energy, 2024, 356, 122429.
|
| 18 | ZHANG J R, FOLEY A, WANG S Y. Optimal planning of a soft open point in a distribution network subject to typhoons[J]. International Journal of Electrical Power & Energy Systems, 2021, 129, 106839. |
| 19 |
LI J K, GE S Y, ZHANG S D, et al. A multi-objective stochastic-information gap decision model for soft open points planning considering power fluctuation and growth uncertainty[J]. Applied Energy, 2022, 317, 119141.
|
| 20 |
JI H R, WANG C S, LI P, et al. Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming[J]. Applied Energy, 2018, 218, 338- 348.
|
| 21 |
CAO W Y, WU J Z, JENKINS N, et al. Benefits analysis of Soft Open Points for electrical distribution network operation[J]. Applied Energy, 2016, 165, 36- 47.
|
| 22 |
PAMSHETTI V B, SINGH S P. Coordinated allocation of BESS and SOP in high PV penetrated distribution network incorporating DR and CVR schemes[J]. IEEE Systems Journal, 2022, 16 (1): 420- 430.
|
| 23 |
DA COSTA L C, THOMÉ F S, GARCIA J D, et al. Reliability-constrained power system expansion planning: A stochastic risk-averse optimization approach[J]. IEEE Transactions on Power Systems, 2021, 36 (1): 97- 106.
|
| 24 |
SABER H, HEIDARABADI H, MOEINI-AGHTAIE M, et al. Expansion planning studies of independent-locally operated battery energy storage systems (BESSs): A CVaR-based study[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2109- 2118.
|
| 25 |
张海波, 胡玉康, 李正荣, 等. 负荷高密度地区中计及灵活性不足风险的储能优化配置[J]. 电网技术, 2023, 47 (12): 4926- 4940.
|
|
ZHANG Haibo, HU Yukang, LI Zhengrong, et al. Optimal configuration of energy storage considering the risk of insufficient flexibility in high load density areas[J]. Power System Technology, 2023, 47 (12): 4926- 4940.
|
|
| 26 |
DE LIMA T D, SOARES J, LEZAMA F, et al. A risk-based planning approach for sustainable distribution systems considering EV charging stations and carbon taxes[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (4): 2294- 2307.
|
| 27 |
MORADIJOZ M, MOGHADDAM M P, HAGHIFAM M R. A flexible active distribution system expansion planning model: a risk-based approach[J]. Energy, 2018, 145, 442- 457.
|
| 28 |
詹勋淞, 管霖, 卓映君, 等. 基于形态学分解的大规模风光并网电力系统多时间尺度灵活性评估[J]. 电网技术, 2019, 43 (11): 3890- 3901.
|
|
ZHAN Xunsong, GUAN Lin, ZHUO Yingjun, et al. Multi-scale flexibility evaluation of large-scale hybrid wind and solar grid-connected power system based on multi-scale morphology[J]. Power System Technology, 2019, 43 (11): 3890- 3901.
|
|
| 29 |
ZHANG L J, XU J W, YANG J H, et al. Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2008, 22 (3): 597- 610.
|
| 30 | VENZKE A, HALILBASIC L, MARKOVIC U, et al. Convex relaxations of chance constrained AC optimal power flow[C]//2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA, IEEE, 2018: 1. |
| 31 |
ROCKAFELLAR R T, URYASEV S. Optimization of conditional value-at-risk[J]. The Journal of Risk, 2000, 2 (3): 21- 41.
|
| 32 |
BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4 (2): 1401- 1407.
|
| [1] | WEI Chunhui, SHAN Linsen, HU Dadong, GAO Qianheng, ZHANG Xinsong, XUE Xiaocen. Optimal Scheduling Strategy of Park-level Virtual Power Plant for Demand Response [J]. Electric Power, 2025, 58(6): 112-121. |
| [2] | FAN Huicong, DUAN Zhiguo, CHEN Zhiyong, ZHU Shijia, LIU Hang, LI Wenxiao, YANG Yang. Two-layer Optimization Scheduling for Off-grid Microgrids Based on Multi-agent Deep Policy Gradient [J]. Electric Power, 2025, 58(5): 11-20, 32. |
| [3] | CHEN Minghongtian, GENG Jianghai, ZHAO Yuze, XU Peng, HAN Yushan, ZHANG Yuming, ZHANG Zimo. Two-Stage Stochastic Optimization Based Weekly Operation Strategy for Electric-Hydrogen Coupled Microgrid [J]. Electric Power, 2025, 58(5): 82-90. |
| [4] | Yushan LIU, Junru CHEN, Xiqiang CHANG, Muyang LIU. Multi-level Evaluation Index System and Application of Grid-Connected Performance of Grid-Forming Energy Storage Converters [J]. Electric Power, 2025, 58(3): 193-203. |
| [5] | Anning WANG, Rongqi FAN, Yang ZHANG, Jiachao LIU, Wei HU, Shimin ZHONG, Ke JIA. Multiple Characteristics Criterion Based Incipient Fault Detection of Distribution Systems [J]. Electric Power, 2024, 57(9): 181-193. |
| [6] | Hui WANG, Kerui ZHOU, Zuohui WU, Zhichao ZOU, Xin LI. Multi-time Scale Optimal Scheduling of Integrated Energy System Coupling Power-to-Gas and Carbon Capture System [J]. Electric Power, 2024, 57(8): 214-226. |
| [7] | Shuai WANG, Yuehui HUANG, Yuanhong NIE, Siyang LIU. Research on Development Scenario of Renewable Energy in Receiving-End Power Grid Based on Production Simulation [J]. Electric Power, 2024, 57(5): 240-250. |
| [8] | Shi MO, Qiushi XU, Zijing LU, Zishou LI, Hongsheng ZHAO, Li QIAO, Chao LUO. Fuzzy Partitioned Multi-objective Risk Framework Based Operational Risk Assessment of Cascading Failure for Power Grid [J]. Electric Power, 2024, 57(2): 41-48. |
| [9] | Zhiwen LIU, Yan LI, Chong SHAO, Xinming FAN, Qinghui ZENG. Distribution Network Flexibility Evaluation Method Considering Collaborative Interaction of Flexible Resources [J]. Electric Power, 2024, 57(10): 158-165. |
| [10] | Tianqi SONG, Zhipeng LV, Zhenhao SONG, Yunting MA, Zhihui ZHANG, Shan ZHOU, Hao LI. Research and Thinking on the Aggregation and Dispatching Control Framework of Virtual Power Plant's Large Scale Flexible Resources [J]. Electric Power, 2024, 57(1): 2-8. |
| [11] | ZHANG Juncheng, LI Min, LIU Zhiwen, TAN Jing, TAO Yigang, LUO Tianlu. An Evaluation Method for Multi-type Flexible Resource Regulation Capability on the User Side of Distribution Networks [J]. Electric Power, 2023, 56(9): 96-103,119. |
| [12] | WANG Jinli, LI Fengsheng, XIE Fang, ZHANG Yao, TIAN Ye. Research on Technical Standard System of New Distribution System Under Double-Carbon Strategy [J]. Electric Power, 2023, 56(5): 22-31. |
| [13] | Weimin ZHENG, Yangqing DAN, Chenxuan WANG, Jiahui WU, Yunfeng ZHU. Evaluation of Renewable Energy Consumption Capacity in Power Grid Considering the Synergistic Effect of Wind-Photovoltaic- Hydro-Thermal Power [J]. Electric Power, 2023, 56(12): 248-254. |
| [14] | AI Xin, XU Limin. Community Energy Sharing Market Model Considering Flexible Resources on Demand Side [J]. Electric Power, 2022, 55(6): 53-64. |
| [15] | LIU Huorang, YAN Wei, LIN Zugui, TAN Hong, LI Guoqiang, WEN Xu. An Annual Peak Regulation Auxiliary Service Demand Assessment Model Based on Multi-time Scale Stochastic Optimization [J]. Electric Power, 2022, 55(6): 9-17,24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
