Electric Power ›› 2024, Vol. 57 ›› Issue (4): 100-110.DOI: 10.11930/j.issn.1004-9649.202306080
• New Energy • Previous Articles Next Articles
Yan GAO1(), Hanbin WU1(
), Jixin ZHANG1(
), Huaming ZHANG2(
), Pei ZHANG3(
)
Received:
2023-06-23
Accepted:
2023-09-21
Online:
2024-04-23
Published:
2024-04-28
Supported by:
Yan GAO, Hanbin WU, Jixin ZHANG, Huaming ZHANG, Pei ZHANG. Day-Ahead Probabilistic Prediction Model for Photovoltaic Power Based on Combined Deep Learning[J]. Electric Power, 2024, 57(4): 100-110.
结构名称 | 超参数设置 | |
TCN#1 | i=2, o=10, p=3, d=1, k=4 | |
TCN#2 | i=10, o=10, p=9, d=3, k=4 | |
TCN#3 | i=10, o=10, p=18, d=6, k=4 | |
LSTM | iL=10, nl=2, hs=128 | |
全连接层 | iN=128, oN=58 |
Table 1 Hyperparameters setting for main structure of TCN- Attention-LSTM
结构名称 | 超参数设置 | |
TCN#1 | i=2, o=10, p=3, d=1, k=4 | |
TCN#2 | i=10, o=10, p=9, d=3, k=4 | |
TCN#3 | i=10, o=10, p=18, d=6, k=4 | |
LSTM | iL=10, nl=2, hs=128 | |
全连接层 | iN=128, oN=58 |
参数 | 数值 | |
学习率 | 0.001 | |
批处理参数 | 32 | |
优化器 | Adam | |
训练集∶测试集 | 9∶1 |
Table 2 Common hyperparameters of model
参数 | 数值 | |
学习率 | 0.001 | |
批处理参数 | 32 | |
优化器 | Adam | |
训练集∶测试集 | 9∶1 |
数据 | 模型 | PICP/ % | PINAW/ kW | SW分数/ kW | 训练时 间/s | |||||
集中式 | LSTM | 93.79 | 0.2979 | 5.5948 | 1603.97 | |||||
TCN | 96.57 | 0.3473 | 5.7086 | 121.89 | ||||||
TCN-Attention | 98.28 | 0.3693 | 5.9472 | 201.41 | ||||||
TCN-LSTM | 95.14 | 0.3259 | 5.7438 | 4260.87 | ||||||
TCN-Attention-LSTM | 97.18 | 0.3099 | 5.1763 | 5008.32 | ||||||
分布式 | LSTM | 88.68 | 0.3229 | 7.6214 | 912.94 | |||||
TCN | 96.60 | 0.4497 | 10.2056 | 33.72 | ||||||
TCN-Attention | 92.08 | 0.3211 | 7.9540 | 122.67 | ||||||
TCN-LSTM | 94.34 | 0.3525 | 8.9185 | 1039.98 | ||||||
TCN-Attention-LSTM | 93.96 | 0.2674 | 7.2308 | 1168.41 |
Table 3 Evaluation metrics of each model within a 90% confidence interval and training time of different models
数据 | 模型 | PICP/ % | PINAW/ kW | SW分数/ kW | 训练时 间/s | |||||
集中式 | LSTM | 93.79 | 0.2979 | 5.5948 | 1603.97 | |||||
TCN | 96.57 | 0.3473 | 5.7086 | 121.89 | ||||||
TCN-Attention | 98.28 | 0.3693 | 5.9472 | 201.41 | ||||||
TCN-LSTM | 95.14 | 0.3259 | 5.7438 | 4260.87 | ||||||
TCN-Attention-LSTM | 97.18 | 0.3099 | 5.1763 | 5008.32 | ||||||
分布式 | LSTM | 88.68 | 0.3229 | 7.6214 | 912.94 | |||||
TCN | 96.60 | 0.4497 | 10.2056 | 33.72 | ||||||
TCN-Attention | 92.08 | 0.3211 | 7.9540 | 122.67 | ||||||
TCN-LSTM | 94.34 | 0.3525 | 8.9185 | 1039.98 | ||||||
TCN-Attention-LSTM | 93.96 | 0.2674 | 7.2308 | 1168.41 |
数据 | 模型 | CRPS/kW | ||
集中式 | LSTM | 0.0589 | ||
TCN | 0.0539 | |||
TCN-Attention | 0.0507 | |||
TCN-LSTM | 0.0433 | |||
TCN-Attention -LSTM | 0.0421 | |||
分布式 | LSTM | 0.0478 | ||
TCN | 0.0565 | |||
TCN-Attention | 0.0505 | |||
TCN-LSTM | 0.0445 | |||
TCN-Attention -LSTM | 0.0441 |
Table 4 CRPS evaluation metrics for various models
数据 | 模型 | CRPS/kW | ||
集中式 | LSTM | 0.0589 | ||
TCN | 0.0539 | |||
TCN-Attention | 0.0507 | |||
TCN-LSTM | 0.0433 | |||
TCN-Attention -LSTM | 0.0421 | |||
分布式 | LSTM | 0.0478 | ||
TCN | 0.0565 | |||
TCN-Attention | 0.0505 | |||
TCN-LSTM | 0.0445 | |||
TCN-Attention -LSTM | 0.0441 |
1 | 国家能源局. 2022年光伏发电建设运行情况[EB/OL]. (2023-02-17)[2023-05-25]. http://www.nea.gov.cn/2023-02/17/c_1310698128.htm. |
2 | 卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48 (5): 1943- 1951. |
LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Engineering, 2022, 48 (5): 1943- 1951. | |
3 |
SANGRODY H, ZHOU N, ZHANG Z A. Similarity-based models for day-ahead solar PV generation forecasting[J]. IEEE Access, 2020, 8, 104469- 104478.
DOI |
4 |
杨茂, 闫琦, 苏欣, 等. 季节分型下一种面向风电功率日前预测的深度自适应滤波框架[J]. 南方电网技术, 2023, 17 (6): 62- 71.
DOI |
YANG Mao, YAN Qi, SU Xin, et al. A depth self-adaptive filtering framework for wind power day-ahead prediction under seasonal classification[J]. Southern Power System Technology, 2023, 17 (6): 62- 71.
DOI |
|
5 |
LINDBERG O, LINGFORS D, ARNQVIST J, et al. Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: trading and forecast verification[J]. Advances in Applied Energy, 2023, 9, 100120.
DOI |
6 | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测: 基本概念与数学原理[J]. 中国电机工程学报, 2021, 41 (19): 6493- 6509. |
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41 (19): 6493- 6509. | |
7 |
GOLESTANEH F, PINSON P, GOOI H B. Very short-term nonparametric probabilistic forecasting of renewable energy generation—with application to solar energy[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3850- 3863.
DOI |
8 |
HUANG Q, WEI S Y. Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power[J]. Energy Conversion and Management, 2020, 220, 113085.
DOI |
9 | 项明俊. 基于地基云图的光伏发电功率概率预测[D]. 杭州: 浙江大学, 2022. |
XIANG Mingjun. Probabilistic forecasting of photovoltaic power generation based on ground cloud images [D]. Hangzhou: Zhejiang University, 2022. | |
10 |
GU B, SHEN H Q, LEI X H, et al. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method[J]. Applied Energy, 2021, 299, 117291.
DOI |
11 |
MEI F, GU J Q, LU J X, et al. Day-ahead nonparametric probabilistic forecasting of photovoltaic power generation based on the LSTM-QRA ensemble model[J]. IEEE Access, 2020, 8, 166138- 166149.
DOI |
12 | 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44 (9): 3416- 3424. |
YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44 (9): 3416- 3424. | |
13 | BAI S J, ZICO KOLTER J, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. ArXiv e-Prints, 2018: arXiv: 1803.01271. |
14 | 宋绍剑, 姜屹远, 刘斌. 一种TCN的改进模型及其在短期光伏功率区间预测的应用[J]. 计算机应用研究, 2023, 40 (10): 3064- 3069. |
SONG Shaojian, JIANG Yiyuan, LIU Bin. Improved TCN model and its application in short-term photovoltaic power interval prediction[J]. Application Research of Computers, 2023, 40 (10): 3064- 3069. | |
15 | 庞昊, 高金峰, 杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术, 2020, 44 (4): 1343- 1350. |
PANG Hao, GAO Jinfeng, DU Yaoheng. A short-term load probability density prediction based on quantile regression of time convolution network[J]. Power System Technology, 2020, 44 (4): 1343- 1350. | |
16 | 陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表, 2022, 59 (10): 108- 116. |
CHEN Yufan, WEN Mi, ZHANG Kai, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention[J]. Electrical Measurement & Instrumentation, 2022, 59 (10): 108- 116. | |
17 | ZANG H X, CHENG L L, DING T, et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. International Journal of Electrical Power & Energy Systems, 2020, 118, 105790. |
18 | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48 (11): 4372- 4388. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probabilistic forecasting of photovoltaic power based on similar day clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48 (11): 4372- 4388. | |
19 | 刘昳娟, 陈云龙, 刘继彦, 等. 基于集成学习的分布式光伏发电功率日前预测[J]. 中国电力, 2022, 55 (9): 38- 45. |
LIU Yijuan, CHEN Yunlong, LIU Jiyan, et al. Ensemble learning-based day-ahead power forecasting of distributed photovoltaic generation[J]. Electric Power, 2022, 55 (9): 38- 45. | |
20 | 黄书民, 蒋林高, 李志川, 等. 基于PSO寻优与DBN神经网络的电晕损耗预测[J]. 中国电力, 2022, 55 (6): 95- 102, 214. |
HUANG Shumin, JIANG Lingao, LI Zhichuan, et al. Corona loss prediction of UHV AC transmission line based on DBN neural network optimized by PSO[J]. Electric Power, 2022, 55 (6): 95- 102, 214. | |
21 | 冯裕祺, 李辉, 李利娟, 等. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55 (7): 163- 171. |
FENG Yuqi, LI Hui, LI Lijuan, et al. Voltage trajectory prediction of photovoltaic power station based on CNN-GRU[J]. Electric Power, 2022, 55 (7): 163- 171. | |
22 |
刘辉, 凌宁青, 罗志强, 等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力, 2022, 50 (8): 30- 37.
DOI |
LIU Hui, LING Ningqing, LUO Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50 (8): 30- 37.
DOI |
|
23 | 符杨, 任子旭, 魏书荣, 等. 基于改进LSTM-TCN模型的海上风电超短期功率预测[J]. 中国电机工程学报, 2022, 42 (12): 4292- 4303. |
FU Yang, REN Zixu, WEI Shurong, et al. Ultra-short-term power prediction of offshore wind power based on improved LSTM-TCN model[J]. Proceedings of the CSEE, 2022, 42 (12): 4292- 4303. | |
24 | 赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41 (1): 135- 146, 404. |
ZHAO Yaxue, WANG Xu, JIANG Chuanwen, et al. A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierarchy gated LSTM[J]. Proceedings of the CSEE, 2021, 41 (1): 135- 146, 404. | |
25 |
HE Y Y, XU Q F, WAN J H, et al. Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function[J]. Energy, 2016, 114, 498- 512.
DOI |
26 |
DONG W C, SUN H X, TAN J X, et al. Regional wind power probabilistic forecasting based on an improved kernel density estimation, regular vine copulas, and ensemble learning[J]. Energy, 2022, 238, 122045.
DOI |
[1] | Lei TAO, Pingping LUO, Jikeng LIN. Two-stage Detection Method for DC Microgrid False Data Injection Attack Based on Deep Learning [J]. Electric Power, 2024, 57(9): 11-19. |
[2] | WU Xiaogang, YAN Jie, GE Chang, TANG Yajie, NI Chouwei, JI Qingfeng. Ultra-Short-Term Power Forecasting Method for Wind-Solar-Hydro Integration Based on Improved GRU-CNN [J]. Electric Power, 2023, 56(9): 178-186,205. |
[3] | XUE Fei, LI Hongqiang, LI Xutao, XU Hengshan. Identification Method for Control Parameters of Doubly-Fed Induction Generator Based on LSTM Neural Network [J]. Electric Power, 2023, 56(6): 31-39. |
[4] | LU Youwen, CUI Hao, CHEN Jianing, PENG Xiangjia, FENG Shuang, LIU Dong. Intelligent Identification Method of Wind Farm Sub-synchronous/Super-synchronous Oscillation Parameters Based on RA-CNN and Synchrophasor [J]. Electric Power, 2023, 56(4): 46-55,67. |
[5] | Zhenzhen ZHOU, Yunhai SONG, Yuhao HE, Liwei WANG, Heyan HUANG, Jue HE, Zhihang ZHU, Yunfeng YAN. Extensible Classification Method for Power Personnel Behavior Based on Pose Estimation [J]. Electric Power, 2023, 56(11): 77-85. |
[6] | Xiangjing SU, Haibo YU, Yang FU, Shuxin TIAN, Haiyu LI, Fuhai GENG. Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function [J]. Electric Power, 2023, 56(11): 10-19. |
[7] | Hongjie ZHANG, Guifeng CHEN, Hongwei YAN, Xiaolong YANG, Tianren HOU, Wei ZHANG. Fault Diagnosis of LSTM Network Tansformer Based on SMOTE and Bayes Optimization [J]. Electric Power, 2023, 56(10): 164-170. |
[8] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[9] | CHEN Tie, ZHANG Zhifan, LI Xianshan, CHEN Yifu, LI Hongxin. Prediction of Dissolved Gas Concentration in Transformer Oil Based on Hybrid Mode Decomposition and LSTM-CNN [J]. Electric Power, 2023, 56(1): 132-141. |
[10] | FAN Jiangchuan, YU Haozheng, LIU Huiting, YANG Lijun, AN Jiakun. Short-Term Load Forecasting Based on Multi-branch Residual Gated Convolution Neural Network [J]. Electric Power, 2022, 55(11): 155-162,174. |
[11] | ZHENG Haofeng, YANG Guohua, KANG Wenjun, LIU Zhiyuan, LIU Shitao, WU Hong, ZHANG Honghao. Load Forecasting Based on Multiple Load Features and TCN-GRU Neural Network [J]. Electric Power, 2022, 55(11): 142-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||