Electric Power ›› 2022, Vol. 55 ›› Issue (11): 155-162,174.DOI: 10.11930/j.issn.1004-9649.202112004
• Short-Term Power Load Forecast • Previous Articles Next Articles
FAN Jiangchuan1, YU Haozheng1, LIU Huiting2, YANG Lijun2, AN Jiakun3
Received:
2021-12-06
Revised:
2022-06-30
Published:
2022-11-29
Supported by:
FAN Jiangchuan, YU Haozheng, LIU Huiting, YANG Lijun, AN Jiakun. Short-Term Load Forecasting Based on Multi-branch Residual Gated Convolution Neural Network[J]. Electric Power, 2022, 55(11): 155-162,174.
[1] 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17–23 ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9): 17–23 [2] 李滨, 高枫. 基于虚拟相似日与DA-LSTPNet的地区电网短期负荷预测[J]. 电力系统自动化, 2021, 45(22): 55–64 LI Bin, GAO Feng. Short-term load forecasting for regional power grid based on virtual similar days and dual-stage attention-based long and short time pattern network[J]. Automation of Electric Power Systems, 2021, 45(22): 55–64 [3] 杨正瓴, 田勇, 张广涛, 等. 相似日短期负荷预测的非线性理论基础与改进[J]. 电网技术, 2006, 30(6): 63–66 YANG Zhengling, TIAN Yong, ZHANG Guangtao, et al. Nonlinear theoretical foundation and improvement of similar days method for short term load forecasting[J]. Power System Technology, 2006, 30(6): 63–66 [4] 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(9): 3416–3424 YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9): 3416–3424 [5] 崔和瑞, 彭旭. 基于ARIMAX模型的夏季短期电力负荷预测[J]. 电力系统保护与控制, 2015, 43(4): 108–114 CUI Herui, PENG Xu. Summer short-term load forecasting based on ARIMAX model[J]. Power System Protection and Control, 2015, 43(4): 108–114 [6] 赵峰, 孙波, 张承慧. 基于多变量相空间重构和卡尔曼滤波的冷热电联供系统负荷预测方法[J]. 中国电机工程学报, 2016, 36(2): 399–406 ZHAO Feng, SUN Bo, ZHANG Chenghui. Cooling, heating and electrical load forecasting method for CCHP system based on multivariate phase space reconstruction and Kalman filter[J]. Proceedings of the CSEE, 2016, 36(2): 399–406 [7] EROSHENKO S A, POROSHIN V I, SENYUK M D, et al. Expert models for electric load forecasting of power system[C]//2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). St. Petersburg and Moscow, Russia. IEEE, 2017: 1507–1513. [8] 蒋敏, 顾东健, 孔军, 等. 基于在线序列极限支持向量回归的短期负荷预测模型[J]. 电网技术, 2018, 42(7): 2240–2247 JIANG Min, GU Dongjian, KONG Jun, et al. Short-term load forecasting model based on online sequential extreme support vector regression[J]. Power System Technology, 2018, 42(7): 2240–2247 [9] 龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J]. 计算机应用, 2021, 41(增刊1): 81–86 GONG Piaoyi, LUO Yunfeng, FANG Zhemei, et al. Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network[J]. Journal of Computer Applications, 2021, 41(S1): 81–86 [10] 李梅, 宁德军, 郭佳程. 基于注意力机制的CNN-LSTM模型及其应用[J]. 计算机工程与应用, 2019, 55(13): 20–27 LI Mei, NING Dejun, GUO Jiacheng. Attention mechanism-based CNN-LSTM model and its application[J]. Computer Engineering and Applications, 2019, 55(13): 20–27 [11] WANG Y, CHEN Q X, GAN D H, et al. Deep learning-based socio-demographic information identification from smart meter data[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2593–2602. [12] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532–4539 ZHU Lingjian, XUN Zihan, WANG Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11): 4532–4539 [13] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370–4376 ZHAO Bing, WANG Zengping, JI Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370–4376 [14] GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222–2232. [15] 张宇帆, 艾芊, 林琳, 等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术, 2019, 43(6): 1884–1892 ZHANG Yufan, AI Qian, LIN Lin, et al. A very short-term load forecasting method based on deep LSTM RNN at zone level[J]. Power System Technology, 2019, 43(6): 1884–1892 [16] 张宇航, 邱才明, 贺兴, 等. 一种基于LSTM神经网络的短期用电负荷预测方法[J]. 电力信息与通信技术, 2017, 15(9): 19–25 ZHANG Yuhang, QIU Caiming, HE Xing, et al. A short-term load forecasting based on LSTM neural network[J]. Electric Power Information and Communication Technology, 2017, 15(9): 19–25 [17] 魏健, 赵红涛, 刘敦楠, 等. 基于注意力机制的CNN-LSTM短期电力负荷预测方法[J]. 华北电力大学学报(自然科学版), 2021, 48(1): 42–47 WEI Jian, ZHAO Hongtao, LIU Dunnan, et al. Short-term power load forecasting method by attention-based CNN-LSTM[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(1): 42–47 [18] CAI M M, PIPATTANASOMPORN M, RAHMAN S. Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques[J]. Applied Energy, 2019, 236: 1078–1088. [19] 王涛, 于长永, 朱赫炎, 等. 基于门控残差神经网络的短期多步负荷预测[J/OL]. 控制工程, 2021: 1–6. WANG Tao, YU Changyong, ZHU Heyan, et al. Short-term multi-step load forecasting based on gated residual neural network[J/OL]. Control Engineering of China, 2021: 1–6. [20] 刘世泽, 朱奕达, 陈润泽, 等. 基于残差时域注意力神经网络的交通模式识别算法[J]. 计算机应用, 2021, 41(6): 1557–1565 LIU Shize, ZHU Yida, CHEN Runze, et al. Traffic mode recognition algorithm based on residual temporal attention neural network[J]. Journal of Computer Applications, 2021, 41(6): 1557–1565 [21] 李昭昱, 艾芊, 张宇帆, 等. 基于attention机制的LSTM神经网络超短期负荷预测方法[J]. 供用电, 2019, 36(1): 17–22 LI Zhaoyu, AI Qian, ZHANG Yufan, et al. A LSTM neural network method based on attention mechanism for ultra short-term load forecasting[J]. Distribution & Utilization, 2019, 36(1): 17–22 [22] 彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745–1751 PENG Wen, WANG Jinrui, YIN Shanqing. Short-term load forecasting model based on attention-LSTM in electricity market[J]. Power System Technology, 2019, 43(5): 1745–1751 [23] 林涵, 郝正航, 郭家鹏, 等. 基于TCA-CNN-LSTM的短期负荷预测研究[J/OL]. 电测与仪表: 1–9[2021-10-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20211027.1431.002.html. LIN Han, HAO Zhenghang, GUO Jiapeng, et al. Research on short-term load forecasting based on TCA-CNN-LSTM[J]. Electrical Measurement & Instrumentation: 1–9[2021-10-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20211027.1431.002.html. [24] YANAGIMTO H, HASHIMOTO K, OKADA M. Attention visualization of gated convolutional neural networks with self attention in sentiment analysis[C]//2018 International Conference on Machine Learning and Data Engineering (iCMLDE). Sydney, NSW, Australia. IEEE, 2019: 77–82. [25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. |
[1] | Yufei WANG, Tong DU, Weiguo BIAN, Zhao ZHANG, Huiting LIU, Lijun YANG. Short-term Load Forecasting Based on DTW K-medoids and VMD Multi-branch Neural Network for Multiple Users [J]. Electric Power, 2024, 57(6): 121-130. |
[2] | Yan GAO, Hanbin WU, Jixin ZHANG, Huaming ZHANG, Pei ZHANG. Day-Ahead Probabilistic Prediction Model for Photovoltaic Power Based on Combined Deep Learning [J]. Electric Power, 2024, 57(4): 100-110. |
[3] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[4] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[5] | Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder [J]. Electric Power, 2024, 57(12): 17-29. |
[6] | WU Xiaogang, YAN Jie, GE Chang, TANG Yajie, NI Chouwei, JI Qingfeng. Ultra-Short-Term Power Forecasting Method for Wind-Solar-Hydro Integration Based on Improved GRU-CNN [J]. Electric Power, 2023, 56(9): 178-186,205. |
[7] | LU Youwen, CUI Hao, CHEN Jianing, PENG Xiangjia, FENG Shuang, LIU Dong. Intelligent Identification Method of Wind Farm Sub-synchronous/Super-synchronous Oscillation Parameters Based on RA-CNN and Synchrophasor [J]. Electric Power, 2023, 56(4): 46-55,67. |
[8] | Xiangjing SU, Haibo YU, Yang FU, Shuxin TIAN, Haiyu LI, Fuhai GENG. Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function [J]. Electric Power, 2023, 56(11): 10-19. |
[9] | Zhenzhen ZHOU, Yunhai SONG, Yuhao HE, Liwei WANG, Heyan HUANG, Jue HE, Zhihang ZHU, Yunfeng YAN. Extensible Classification Method for Power Personnel Behavior Based on Pose Estimation [J]. Electric Power, 2023, 56(11): 77-85. |
[10] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[11] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[12] | CHEN Tie, ZHANG Zhifan, LI Xianshan, CHEN Yifu, LI Hongxin. Prediction of Dissolved Gas Concentration in Transformer Oil Based on Hybrid Mode Decomposition and LSTM-CNN [J]. Electric Power, 2023, 56(1): 132-141. |
[13] | HU Jing, DENG Ying, JIANG Xingliang, ZENG Yunrui. Feature Extraction and Identification Method of Ice-covered Saddle Mircotopography for Transmission Lines [J]. Electric Power, 2022, 55(8): 135-142. |
[14] | XU Yusong, ZOU Shanhua, LU Xianling. Short-Term Load Forecasting Based on Feature Selection and Combination Model [J]. Electric Power, 2022, 55(7): 121-127. |
[15] | HUANG Dongmei, WANG Yueqi, HU Anduo, SUN Jinzhong, SHI Shuai, SUN Yuan, FANG Lingfeng. An Edge Recognition Method for Insulator State Based on Multi-dimension Feature Fusion [J]. Electric Power, 2022, 55(1): 133-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||