Electric Power ›› 2022, Vol. 55 ›› Issue (1): 133-141.DOI: 10.11930/j.issn.1004-9649.202011120
Previous Articles Next Articles
HUANG Dongmei1, WANG Yueqi2, HU Anduo1, SUN Jinzhong1, SHI Shuai2, SUN Yuan3, FANG Lingfeng4
Received:
2020-11-30
Revised:
2021-03-17
Online:
2022-01-28
Published:
2022-01-20
Supported by:
HUANG Dongmei, WANG Yueqi, HU Anduo, SUN Jinzhong, SHI Shuai, SUN Yuan, FANG Lingfeng. An Edge Recognition Method for Insulator State Based on Multi-dimension Feature Fusion[J]. Electric Power, 2022, 55(1): 133-141.
[1] 刘逸凡, 王淑青, 庆毅辉, 等. 基于EfficientDet和双目摄像头的绝缘子缺陷检测[J]. 中国电力, 2021, 54(2): 156–163, 196 LIU Yifan, WANG Shuqing, QING Yihui, et al. Insulator defect detection based on EfficientDet and binocular camera[J]. Electric Power, 2021, 54(2): 156–163, 196 [2] 李振宇, 郭锐, 赖秋频, 等. 基于计算机视觉的架空输电线路机器人巡检技术综述[J]. 中国电力, 2018, 51(11): 139–146 LI Zhenyu, GUO Rui, LAI Qiupin, et al. Survey of inspection technology of overhead transmission line robot based on computer vision[J]. Electric Power, 2018, 51(11): 139–146 [3] 白洁音, 赵瑞, 谷丰强, 等. 多目标检测和故障识别图像处理方法[J]. 高电压技术, 2019, 45(11): 3504–3511 BAI Jieyin, ZHAO Rui, GU Fengqiang, et al. Multi-target detection and fault recognition image processing method[J]. High Voltage Engineering, 2019, 45(11): 3504–3511 [4] 黄郑, 王永强, 王红星, 等. 基于云雾边异构协同的无人机智慧巡检系统[J]. 中国电力, 2020, 53(4): 161–168 HUANG Zheng, WANG Yongqiang, WANG Hongxing, et al. Design and application of UAV intelligent inspection system for transmission lines based on cloud and fog-edge heterogeneous collaborative computing architecture[J]. Electric Power, 2020, 53(4): 161–168 [5] 杨焰飞, 曹阳. 基于深度学习的无人机拍摄图像绝缘子目标检测[J]. 激光杂志, 2020, 41(10): 63–66 YANG Yanfei, CAO Yang. Image insulator target detection based on deep learning for UAV[J]. Laser Journal, 2020, 41(10): 63–66 [6] 李雪峰, 刘海莹, 刘高华, 等.基于深度学习的输电线路销钉缺陷检测[J/OL].电网技术: 1-9[2021-03-09]. https://doi.org/10.13335/j.1000-3673.pst.2020.1028. LI Xuefeng, LIU Haiying, LIU Gaohua, et al. Transmission line pin defect detection based on deep learning [J/OL]. Power System Technology: 1-9[2021-03-09]. https://doi.org/10.13335/j.1000-3673.pst.2020.1028. [7] 姚春羽, 金立军, 闫书佳. 电网巡检图像中绝缘子的识别[J]. 系统仿真学报, 2012, 24(9): 1818–1822 YAO Chunyu, JIN Lijun, YAN Shujia. Recognition of insulator string in power grid patrol images[J]. Journal of System Simulation, 2012, 24(9): 1818–1822 [8] 王银立, 闫斌. 基于视觉的绝缘子“掉串”缺陷的检测与定位[J]. 计算机工程与设计, 2014, 35(2): 583–587 WANG Yinli, YAN Bin. Vision based detection and location for cracked insulator[J]. Computer Engineering and Design, 2014, 35(2): 583–587 [9] 高强, 孟格格. 基于卷积神经网络的绝缘子故障识别算法研究[J]. 电测与仪表, 2017, 54(21): 30–36 GAO Qiang, MENG Gege. Research of a faulted insulator identification algorithm based on convolution neural network[J]. Electrical Measurement & Instrumentation, 2017, 54(21): 30–36 [10] 潘哲, 张兴忠, 杨罡, 等. 弱监督细粒度分类在绝缘子故障识别中的应用[J]. 山西大学学报(自然科学版), 2020, 43(3): 490–498 PAN Zhe, ZHANG Xingzhong, YANG Gang, et al. Application of weakly supervised fine-grained classification in insulator fault identification[J]. Journal of Shanxi University (Natural Science Edition), 2020, 43(3): 490–498 [11] JIANG H, QIU X J, CHEN J, et al. Insulator fault detection in aerial images based on ensemble learning with multi-level perception[J]. IEEE Access, 2019, 7: 61797–61810. [12] 马富齐, 王波, 董旭柱, 等. 电力视觉边缘智能: 边缘计算驱动下的电力深度视觉加速技术[J]. 电网技术, 2020, 44(6): 2020–2029 MA Fuqi, WANG Bo, DONG Xuzhu, et al. Power vision edge intelligence: power depth vision acceleration technology driven by edge computing[J]. Power System Technology, 2020, 44(6): 2020–2029 [13] 司羽飞, 谭阳红, 汪沨, 等. 面向电力物联网的云边协同结构模型[J]. 中国电机工程学报, 2020, 40(24): 7973–7979, 8234 SI Yufei, TAN Yanghong, WANG Feng, et al. Cloud-edge collaborative structure model for power Internet of Things[J]. Proceedings of the CSEE, 2020, 40(24): 7973–7979, 8234 [14] 赵文清, 严海, 周震东, 等. 基于残差BP神经网络的变压器故障诊断[J]. 电力自动化设备, 2020, 40(2): 143–148 ZHAO Wenqing, YAN Hai, ZHOU Zhendong, et al. Fault diagnosis of transformer based on residual BP neural network[J]. Electric Power Automation Equipment, 2020, 40(2): 143–148 [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. [16] ZHANG Y M, XU M, LI X D. Remote sensing image retrieval based on DenseNet model and CBAM[C]//2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET). Beijing, China. IEEE, 2020: 86-90. [17] 路艳巧, 孙翠英, 曹红卫, 等. 基于边缘计算与深度学习的输电设备异物检测方法[J]. 中国电力, 2020, 53(6): 27–33 LU Yanqiao, SUN Cuiying, CAO Hongwei, et al. Foreign body detection method for transmission equipment based on edge computing and deep learning[J]. Electric Power, 2020, 53(6): 27–33 [18] 原吕泽芮, 顾洁, 金之俭. 基于云-边-端协同的电力物联网用户侧数据应用框架[J]. 电力建设, 2020, 41(7): 1–8 YUAN Lüzerui, GU Jie, JIN Zhijian. User-side data application framework based on cloud-edge-user collaboration in power Internet of Things[J]. Electric Power Construction, 2020, 41(7): 1–8 [19] 徐风, 苗哲, 业巧林. 基于卷积注意力模块的端到端遥感图像分类[J]. 林业工程学报, 2020, 5(4): 133–138 XU Feng, MIAO Zhe, YE Qiaolin. End-to-end remote sensing image classification framework based on convolutional block attention module[J]. Journal of Forestry Engineering, 2020, 5(4): 133–138 [20] 徐凯, 梁志坚, 张镱议, 等. 基于GoogLeNet Inception-V3模型的电力设备图像识别[J]. 高压电器, 2020, 56(9): 129–135, 143 XU Kai, LIANG Zhijian, ZHANG Yiyi, et al. Image recognition of electric equipment based on GoogLeNet inception-V3 model[J]. High Voltage Apparatus, 2020, 56(9): 129–135, 143 [21] 赵小强, 梁浩鹏. 使用改进残差神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2020, 54(9): 23–31 ZHAO Xiaoqiang, LIANG Haopeng. Fault diagnosis method for rolling bearing under variable working conditions using improved residual neural network[J]. Journal of Xi'an Jiaotong University, 2020, 54(9): 23–31 [22] GitHub-shanghai/InsulatorDataSet: 提供无人机捕获的普通绝缘子图像和合成有缺陷的绝缘子图像[EB/OL]. https://github.com/InsulatorData/InsulatorDataSet. [23] 罗建军, 刘振声, 龚翔, 等. 基于无人机图像与迁移学习的线路绝缘子状态评价方法[J]. 电力工程技术, 2019, 38(5): 30–36 LUO Jianjun, LIU Zhensheng, GONG Xiang, et al. Insulator state evaluation method based on UAV image and migration learning[J]. Electric Power Engineering Technology, 2019, 38(5): 30–36 [24] 龚钢军, 张帅, 吴秋新, 等. 基于TensorFlow的高压输电线路异物识别[J]. 电力自动化设备, 2019, 39(4): 204–209, 216 GONG Gangjun, ZHANG Shuai, WU Qiuxin, et al. Foreign body identification based on TensorFlow for high voltage transmission line[J]. Electric Power Automation Equipment, 2019, 39(4): 204–209, 216 |
[1] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[2] | Mingjiang WEI, Peng LI, Hao YU, Haoran JI, Guanyu SONG, Wei XI. Experiment Platform of Edge Computing for Digital Distribution Networks [J]. Electric Power, 2024, 57(3): 12-19. |
[3] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[4] | Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder [J]. Electric Power, 2024, 57(12): 17-29. |
[5] | Xiangyang XIA, Xinxin TAN, Zhouping SHAN, Hui LI, Zhiqiang XU, Jinbo WU, Jiahui YUE, Guiquan CHEN. Key Technology and Development Prospect of Ontology Safety for Lithium-Ion Battery Storage Power Stations [J]. Electric Power, 2024, 57(11): 1-17. |
[6] | LI Tianchu, RONG Bin, WU Zhipeng, HUANG Jue, HUANG Kailai, YANG Gang, YI Yang. Suppression Strategy of Unintentional Emission Supraharmonic Based on Edge Computing for Wind Farms [J]. Electric Power, 2023, 56(8): 200-206,215. |
[7] | WU Gang, ZHOU Jinhui, LI Hui. Resource Allocation for Edge-enhanced Distributed Power Wireless Sensor Network [J]. Electric Power, 2023, 56(8): 77-85,98. |
[8] | YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, WANG Chengmin, XIE Ning. State Recognition of Wind Turbines Based on K-means and BPNN [J]. Electric Power, 2023, 56(6): 158-166,175. |
[9] | YANG Jinxiang, PENG Yonggang, CAI Tiantian, XI Wei, DENG Qingtang. Power Terminal Lightweight Authentication Protocol for Edge Computing [J]. Electric Power, 2023, 56(4): 88-94. |
[10] | Long ZHAO, Guanru WEN, Zhicheng LIU, Peng YUAN, Xinsheng DONG. Transmission Tower Tilt State Recognition Based on Parameter Optimization of VMD-SVD and LSTM [J]. Electric Power, 2023, 56(12): 217-226, 237. |
[11] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[12] | HU Jing, DENG Ying, JIANG Xingliang, ZENG Yunrui. Feature Extraction and Identification Method of Ice-covered Saddle Mircotopography for Transmission Lines [J]. Electric Power, 2022, 55(8): 135-142. |
[13] | SUN Yi, CHANG Shaonan, CHEN Kai, CUI Qiang, SHEN Weijie. Joint Service Caching and Computing Offloading Strategies for Electrical Equipment Intelligent IoT Platform [J]. Electric Power, 2022, 55(4): 23-32,43. |
[14] | FAN Jiangchuan, YU Haozheng, LIU Huiting, YANG Lijun, AN Jiakun. Short-Term Load Forecasting Based on Multi-branch Residual Gated Convolution Neural Network [J]. Electric Power, 2022, 55(11): 155-162,174. |
[15] | LU Xu, CHEN Ying, XU Zhongping, ZHANG Haiquan, MU Chunfang, CHEN Kai, SUN Yi. Joint Demand Response and Task Offloading Strategy for 5G Edge Computing Network [J]. Electric Power, 2022, 55(10): 209-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||