Electric Power ›› 2023, Vol. 56 ›› Issue (4): 88-94.DOI: 10.11930/j.issn.1004-9649.202204082
• Edge Computing and Control for Digital Distribution Networks • Previous Articles Next Articles
YANG Jinxiang1, PENG Yonggang1, CAI Tiantian2, XI Wei2, DENG Qingtang2
Received:
2021-04-19
Revised:
2023-03-13
Accepted:
2021-07-18
Online:
2023-04-23
Published:
2023-04-28
Supported by:
YANG Jinxiang, PENG Yonggang, CAI Tiantian, XI Wei, DENG Qingtang. Power Terminal Lightweight Authentication Protocol for Edge Computing[J]. Electric Power, 2023, 56(4): 88-94.
[1] IBRAHIM M. Octopus: an edge-fog mutual authentication scheme[J]. Int J Netw Secur, 2016, 18: 1089–1101. [2] 房卫东, 张武雄, 潘涛, 等. 一种分层无线传感网的匿名双因素用户认证协议[J]. 工程科学与技术, 2020, 52(3): 168–177 FANG Weidong, ZHANG Wuxiong, PAN Tao, et al. An anonymous two-factor user authentication protocol for hierarchical wireless sensor network[J]. Advanced Engineering Sciences, 2020, 52(3): 168–177 [3] WANG J, WU L B, CHOO K K R, et al. Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1984–1992. [4] JIA X Y, HE D B, KUMAR N, et al. A provably secure and efficient identity-based anonymous authentication scheme for mobile edge computing[J]. IEEE Systems Journal, 2020, 14(1): 560–571. [5] CHEN Y, WEN H, WU J S, et al. Clustering based physical-layer authentication in edge computing systems with asymmetric resources[J]. Sensors (Basel, Switzerland), 2019, 19(8): 1926. [6] BADAR H M S, QADRI S, SHAMSHAD S, et al. An identity based authentication protocol for smart grid environment using physical uncloneable function[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4426–4434. [7] ROBERTS B, AKKAYA K, BULUT E, et al. An authentication framework for electric vehicle-to-electric vehicle charging applications[C]//2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). Orlando, FL, USA. IEEE, 2017: 565–569. [8] LING C H, LEE C C, YANG C C, et al. A secure and efficient one-time password authentication scheme for WSN[J]. Int. J. Netw. Secur., 2017, 19(2): 177–181. [9] WANG G D, TIAN D B, GU F Q, et al. Design of terminal security access scheme based on trusted computing in ubiquitous electric Internet of Things[C]//2020 IEEE 9 th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China. IEEE, 2021: 188–192. [10] 程洋, 雷敏, 罗群. 基于深度学习的物联网终端设备接入认证方法[J]. 信息网络安全, 2020, 20(11): 67–74 CHENG Yang, LEI Min, LUO Qun. Access authentication method for IoT terminal devices based on deep learning[J]. Netinfo Security, 2020, 20(11): 67–74 [11] DOLEV D, YAO A. On the security of public key protocols[J]. IEEE Transactions on Information Theory, 1983, 29(2): 198–208. [12] ARMANDO A, BASIN D, BOICHUT Y, et al. The AVISPA tool for the automated validation of internet security protocols and applications[M]//Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 281–285. [13] MANSOOR K, GHANI A, CHAUDHRY S A, et al. Securing IoT-based RFID systems: a robust authentication protocol using symmetric cryptography[J]. Sensors (Basel, Switzerland), 2019, 19(21): 4752. [14] WAZID M, DAS A K, SHETTY S, et al. LDAKM-EIoT: lightweight device authentication and key management mechanism for edge-based IoT deployment[J]. Sensors (Basel, Switzerland), 2019, 19(24): 5539. [15] FARASH M S, TURKANOVIĆ M, KUMARI S, et al. An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment[J]. Ad Hoc Networks, 2016, 36(P1): 152–176. [16] JIA X Y, HE D B, KUMAR N, et al. Authenticated key agreement scheme for fog-driven IoT healthcare system[J]. Wireless Networks, 2019, 25(8): 4737–4750. [17] ZHOU L, LI X, YEH K H, et al. Lightweight IoT-based authentication scheme in cloud computing circumstance[J]. Future Generation Computer Systems, 2019, 91: 244–251. [18] MASUD M, ALAZAB M, CHOUDHARY K, et al. 3 P-SAKE: privacy-preserving and physically secured authenticated key establishment protocol for wireless industrial networks[J]. Computer Communications, 2021, 175: 82–90. [19] 王茜, 杨德礼. 验证电子商务协议的新逻辑分析方法[J]. 系统工程学报, 2009, 24(1): 32–38 WANG Qian, YANG Deli. New logic analysis method for the verification of electronic commerce protocol[J]. Journal of Systems Engineering, 2009, 24(1): 32–38 [20] LU Y R, LI L X, PENG H P, et al. An energy efficient mutual authentication and key agreement scheme preserving anonymity for wireless sensor networks[J]. Sensors (Basel, Switzerland), 2016, 16(6): 837. [21] WU F, XU L L, KUMARI S, et al. A privacy-preserving and provable user authentication scheme for wireless sensor networks based on Internet of Things security[J]. Journal of Ambient Intelligence and Humanized Computing, 2017, 8(1): 101–116. [22] 李露, 谢映宏, 许永军, 等. 一种DNP3 SAv5的安全架构在配网终端的设计与应用[J]. 电力系统保护与控制, 2022, 50(17): 154–166 LI Lu, XIE Yinghong, XU Yongjun, et al. Design and implementation of a DNP3 SAv5 secure architecture in a distribution network terminal[J]. Power System Protection and Control, 2022, 50(17): 154–166 [23] 孔垂跃, 陈羽, 赵乾名. 基于MQTT协议的配电物联网云边通信映射研究[J]. 电力系统保护与控制, 2021, 49(8): 168–176 KONG Chuiyue, CHEN Yu, ZHAO Qianming. Research on cloud-side communication mapping of the distribution Internet of Things based on MQTT protocol[J]. Power System Protection and Control, 2021, 49(8): 168–176 [24] 刘林彬, 苗泉强, 李俊娥. 基于模糊测试的GOOSE协议解析漏洞挖掘方法[J]. 中国电力, 2022, 55(4): 33–43 LIU Linbin, MIAO Quanqiang, LI June. A method for mining GOOSE protocol parsing vulnerabilities based on fuzzing[J]. Electric Power, 2022, 55(4): 33–43 [25] 李精松, 刘路翊, 曹尚, 等. 适应变电站智能运维的智能协议转换方法[J]. 电力系统保护与控制, 2021, 49(18): 146–153 LI Jingsong, LIU Luyi, CAO Shang, et al. An intelligent protocol conversion method for intelligent substation operation and maintenance[J]. Power System Protection and Control, 2021, 49(18): 146–153 |
[1] | Mingjiang WEI, Peng LI, Hao YU, Haoran JI, Guanyu SONG, Wei XI. Experiment Platform of Edge Computing for Digital Distribution Networks [J]. Electric Power, 2024, 57(3): 12-19. |
[2] | Xiangyang XIA, Xinxin TAN, Zhouping SHAN, Hui LI, Zhiqiang XU, Jinbo WU, Jiahui YUE, Guiquan CHEN. Key Technology and Development Prospect of Ontology Safety for Lithium-Ion Battery Storage Power Stations [J]. Electric Power, 2024, 57(11): 1-17. |
[3] | LI Tianchu, RONG Bin, WU Zhipeng, HUANG Jue, HUANG Kailai, YANG Gang, YI Yang. Suppression Strategy of Unintentional Emission Supraharmonic Based on Edge Computing for Wind Farms [J]. Electric Power, 2023, 56(8): 200-206,215. |
[4] | WU Gang, ZHOU Jinhui, LI Hui. Resource Allocation for Edge-enhanced Distributed Power Wireless Sensor Network [J]. Electric Power, 2023, 56(8): 77-85,98. |
[5] | SUN Yi, CHANG Shaonan, CHEN Kai, CUI Qiang, SHEN Weijie. Joint Service Caching and Computing Offloading Strategies for Electrical Equipment Intelligent IoT Platform [J]. Electric Power, 2022, 55(4): 23-32,43. |
[6] | LU Xu, CHEN Ying, XU Zhongping, ZHANG Haiquan, MU Chunfang, CHEN Kai, SUN Yi. Joint Demand Response and Task Offloading Strategy for 5G Edge Computing Network [J]. Electric Power, 2022, 55(10): 209-218. |
[7] | HUANG Dongmei, WANG Yueqi, HU Anduo, SUN Jinzhong, SHI Shuai, SUN Yuan, FANG Lingfeng. An Edge Recognition Method for Insulator State Based on Multi-dimension Feature Fusion [J]. Electric Power, 2022, 55(1): 133-141. |
[8] | LIU Shidong, BU Xiande, YU Qiang, TIAN Feng. Energy Efficiency Optimization Based on Computing Offloading for Internet of Things in Power Systems [J]. Electric Power, 2021, 54(5): 28-34,45. |
[9] | JIN Kaiyun, YANG Jianhua, CHEN Zheng, WANG Weizhou, HOU Bin, XUE Wenjing. Blockchain-based Transaction Model of Distributed Photovoltaic Generation for Local Power Consumption [J]. Electric Power, 2021, 54(5): 8-16. |
[10] | LU Yanqiao, SUN Cuiying, CAO Hongwei, YAN Hongwei. Foreign Body Detection Method for Transmission Equipment Based on Edge Computing and Deep Learning [J]. Electric Power, 2020, 53(6): 27-33. |
[11] | QIAN Bin, CAI Ziwen, XIAO Yong, YANG Jinfeng, DONG Xingyin, GU Ke. Data Collaborative Detection Scheme of Electric Metering System Based on Edge Computing [J]. Electric Power, 2019, 52(11): 145-152. |
[12] | LI Bin, JIA Bincheng, CHEN Songsong, YANG Bin, SUN Yi, QI Bing. Prospect of Application of Edge Computing in the Field of Supply and Demand [J]. Electric Power, 2018, 51(11): 154-162. |
[13] | YANG Wenhai, ZHU Jing, GAO Yajing, CHENG Huaxin, XUE Fushen, WANG Jingmin. Design of Intelligent Electrical Terminal Containing Electrical Credit Evaluation [J]. Electric Power, 2016, 49(9): 72-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||