Electric Power ›› 2024, Vol. 57 ›› Issue (12): 2-16.DOI: 10.11930/j.issn.1004-9649.202410093
• Power & Load Forecasting Technology in New Power Systems • Previous Articles Next Articles
Zhuo LI1(), Yinzhe WANG1(
), Lin YE1(
), Yadi LUO2, Xuri SONG2, Zhenyu ZHANG3
Received:
2024-10-29
Accepted:
2025-01-27
Online:
2024-12-23
Published:
2024-12-28
Supported by:
Zhuo LI, Yinzhe WANG, Lin YE, Yadi LUO, Xuri SONG, Zhenyu ZHANG. The Application of Graph Neural Networks in Power Systems from Perspective of Perception-Prediction-Optimization[J]. Electric Power, 2024, 57(12): 2-16.
变体类型 | 特点 | 工作机制 | 适用范围 | 优缺点 | ||||
回归图神经网络 | 结合RNN等处理图数据中的时间依赖性 | 使用RNN、LSTM或GRU等机制递归更新节点状态 | 动态图的时间序列预测,如用户行为跟踪、交通流预测等 | 优点:能捕捉长时依赖关系; 局限:计算成本高,扩展性差,难以并 行化 | ||||
图卷积神经网络 | 通过卷积运算聚合图结构中的节点信息 | 谱图卷积基于拉普拉斯矩阵和傅里叶变换实现节点特征的滤波和聚合,空间图卷积在局部邻域聚合节点信息 | 节点分类、图分类、链路预测,特别适合静态图 | 谱图卷积:适合全局图特征,但计算复杂; 空间图卷积:具有良好扩展性和效率,但可能忽略全局信息 | ||||
图注意力神经网络 | 引入注意力机制,为邻居节点分配不同 权重 | 通过注意力层动态分配邻居节点的重要性,从而提高特征聚合效果 | 适用于动态或异构图,如社交网络、知识图谱等 | 优点:能灵活捕捉复杂关系; 局限:对大规模图计算需求高,时间成 本高 | ||||
时空图卷积神经 网络 | 结合空间和时间维度的节点特征处理,适用于动态图拓扑 | GCNs提取空间特征,LSTM捕捉时间序列特征,并将两者顺次结合 | 时空数据分析,如新能源功率预测、交通流量预测 | 优点:高效处理大规模图数据,同时捕捉空间和时间依赖关系; 局限:模型复杂,训练时间长,计算资源需求高 | ||||
复合图 模型 | 将GNNs与其他模型(如生成模型或强化学习)结合,进行数据增强或决策优化 | 结合图结构与强化学习或生成模型,用于决策优化或数据生成 | 实时决策、资源分配、路径规划、数据增强等任务 | 优点:有利于优化决策的制定和特征表示的可解释性; 局限:计算复杂度高,需大量数据和长时间训练以获得最优表现 |
Table 1 Categories of GNNs
变体类型 | 特点 | 工作机制 | 适用范围 | 优缺点 | ||||
回归图神经网络 | 结合RNN等处理图数据中的时间依赖性 | 使用RNN、LSTM或GRU等机制递归更新节点状态 | 动态图的时间序列预测,如用户行为跟踪、交通流预测等 | 优点:能捕捉长时依赖关系; 局限:计算成本高,扩展性差,难以并 行化 | ||||
图卷积神经网络 | 通过卷积运算聚合图结构中的节点信息 | 谱图卷积基于拉普拉斯矩阵和傅里叶变换实现节点特征的滤波和聚合,空间图卷积在局部邻域聚合节点信息 | 节点分类、图分类、链路预测,特别适合静态图 | 谱图卷积:适合全局图特征,但计算复杂; 空间图卷积:具有良好扩展性和效率,但可能忽略全局信息 | ||||
图注意力神经网络 | 引入注意力机制,为邻居节点分配不同 权重 | 通过注意力层动态分配邻居节点的重要性,从而提高特征聚合效果 | 适用于动态或异构图,如社交网络、知识图谱等 | 优点:能灵活捕捉复杂关系; 局限:对大规模图计算需求高,时间成 本高 | ||||
时空图卷积神经 网络 | 结合空间和时间维度的节点特征处理,适用于动态图拓扑 | GCNs提取空间特征,LSTM捕捉时间序列特征,并将两者顺次结合 | 时空数据分析,如新能源功率预测、交通流量预测 | 优点:高效处理大规模图数据,同时捕捉空间和时间依赖关系; 局限:模型复杂,训练时间长,计算资源需求高 | ||||
复合图 模型 | 将GNNs与其他模型(如生成模型或强化学习)结合,进行数据增强或决策优化 | 结合图结构与强化学习或生成模型,用于决策优化或数据生成 | 实时决策、资源分配、路径规划、数据增强等任务 | 优点:有利于优化决策的制定和特征表示的可解释性; 局限:计算复杂度高,需大量数据和长时间训练以获得最优表现 |
应用环节 | 应用场景 | 图模型 | 图建模方法 | 计算复杂度 | 实验性能 | 创新之处 | 存在问题 | |||||||
状态感知 | 直流电网节点电压估计 | 谱图卷积 | 静态图 | 高,特别是在大规模电网中处理非线性问题 | 非线性条件节点电压估计精度高,不同负载条件下表现优越 | 提升模型在非线性系统下的电压估计精度 | 对图拓扑结构变化并不敏感 | |||||||
配电网故障定位 | GAT | 静态图 | 中等,注意力机制的计算成本很高 | 模型表现出更强的鲁棒性和故障定位准确率,定位时间显著缩短 | 通过GAT动态调整邻居节点权重,提升模型故障定位精度 | 忽略了节点和线路状态随时间变化 | ||||||||
电力系统静态安全分析 | 节点图与边图切换卷积模型 | 动态图,节点图与边图切换 | 切换图模型计算开销大 | 在处理新能源波动和多故障场景中的表现优于传统潮流计算方法 | 节点图与边图交替卷积机制,适用于新能源波动条件 | 依赖于节点图和边图切换,计算代 价高 | ||||||||
输电线路自然灾害事故预测 | 谱图卷积 | 静态图,基于知识图谱嵌入 | 低,但在极端天气条件下对大规模电网的训练时间较长 | 嵌入知识图谱后显著提升了极端天气条件下的输电线路事故预测精度 | 将知识图谱嵌入GCN中,提升模型在极端天气条件下预测精度 | 未考虑自然灾害影响的时序动态变化 | ||||||||
预测 | 短期住宅负荷预测 | Graph WaveNet | 自适应邻接矩阵 | 较低,适合大规模数据学习 | 优于传统机器学习和深度学习 | 无需先验地理知识,自适应学习节点依赖关系 | 对住宅负荷高度波动场景适应性较差 | |||||||
短期住宅负荷预测 | 迁移学习+ GNNs | 使用源域数据 迁移学习目标 域模型 | 中等,依赖源域数据的有效性 | 源域与目标域差异较大时,迁移学习可提升预测精度 | 通过迁移学习提升数据不足场景下的模型精度,解决负迁移问题 | 对于新建住宅区,如何建立可靠的 源域 | ||||||||
短期风速预测 | STGCNs (LSTM) | 动态图,互信息 | 高,长时间序列的处理开销较大 | 模型鲁棒性强,特别适合噪声大的风速预测场景 | 结合粗糙集理论,处理数据不确定性和噪声 | 优化模型的时空复杂度,降低计算 成本 | ||||||||
超短期风电功率 预测 | STGCNs (TCN) | 有向图,格兰杰因果关系 | 高,随数据规模增加,计算成本高 | 在多站点预测任务中表现优异,鲁棒性提升 | 构建有向图,时空相关性可解释性增强 | 过于依赖风电场间强依赖性 | ||||||||
优化 | 最优潮流 | 空间 GCNs | 物理引导的图 建模 | 较高,特别是大规模非线性问题 | 求解精度显著提高,尤其适用于非线性和拓扑变化场景 | 物理约束嵌入模型,提升预测精度,并考虑非线性约束 | 在极大规模或实时条件下受到计算时间限制 | |||||||
交流最优潮流 | GNNs | 加权无向图 | 高,处理IEEE-118节点系统,性能受限 | 在IEEE-30系统求解性能较其他对比方法更优,而IEEE-118系统中GNN性能不如IPOPT | 引入无监督学习,使用对数障碍惩罚函数处理非凸约束问题,无需标注数据 | 难以处理长距离传输线路的约束问题 | ||||||||
交流最优潮流 | GNNs | 无向图 | 分区和并行处理显著降低复杂度 | 在短训练时间内实现了AC-OPF高效求解,且约束违例极少 | 基于空间分解的两阶段并行学习方法,大幅提升大规模求解速度 | 在复杂或不规则电网拓扑中表现受限 | ||||||||
输电网潮流预测 | GNNs + 多任务 学习 | 静态图 | 计算复杂度中等,依赖于嵌入层的 计算 | 多节点潮流预测中表现显著优于传统方法,有效捕捉节点间依赖 | 使用贝叶斯嵌入层捕捉节点间依赖,提升局部差异表达 | 模型未考虑动态拓扑变化,依赖嵌入层的准确性 |
Table 2 The application comparison of GNNs in the perception-prediction-optimization stages of power systems
应用环节 | 应用场景 | 图模型 | 图建模方法 | 计算复杂度 | 实验性能 | 创新之处 | 存在问题 | |||||||
状态感知 | 直流电网节点电压估计 | 谱图卷积 | 静态图 | 高,特别是在大规模电网中处理非线性问题 | 非线性条件节点电压估计精度高,不同负载条件下表现优越 | 提升模型在非线性系统下的电压估计精度 | 对图拓扑结构变化并不敏感 | |||||||
配电网故障定位 | GAT | 静态图 | 中等,注意力机制的计算成本很高 | 模型表现出更强的鲁棒性和故障定位准确率,定位时间显著缩短 | 通过GAT动态调整邻居节点权重,提升模型故障定位精度 | 忽略了节点和线路状态随时间变化 | ||||||||
电力系统静态安全分析 | 节点图与边图切换卷积模型 | 动态图,节点图与边图切换 | 切换图模型计算开销大 | 在处理新能源波动和多故障场景中的表现优于传统潮流计算方法 | 节点图与边图交替卷积机制,适用于新能源波动条件 | 依赖于节点图和边图切换,计算代 价高 | ||||||||
输电线路自然灾害事故预测 | 谱图卷积 | 静态图,基于知识图谱嵌入 | 低,但在极端天气条件下对大规模电网的训练时间较长 | 嵌入知识图谱后显著提升了极端天气条件下的输电线路事故预测精度 | 将知识图谱嵌入GCN中,提升模型在极端天气条件下预测精度 | 未考虑自然灾害影响的时序动态变化 | ||||||||
预测 | 短期住宅负荷预测 | Graph WaveNet | 自适应邻接矩阵 | 较低,适合大规模数据学习 | 优于传统机器学习和深度学习 | 无需先验地理知识,自适应学习节点依赖关系 | 对住宅负荷高度波动场景适应性较差 | |||||||
短期住宅负荷预测 | 迁移学习+ GNNs | 使用源域数据 迁移学习目标 域模型 | 中等,依赖源域数据的有效性 | 源域与目标域差异较大时,迁移学习可提升预测精度 | 通过迁移学习提升数据不足场景下的模型精度,解决负迁移问题 | 对于新建住宅区,如何建立可靠的 源域 | ||||||||
短期风速预测 | STGCNs (LSTM) | 动态图,互信息 | 高,长时间序列的处理开销较大 | 模型鲁棒性强,特别适合噪声大的风速预测场景 | 结合粗糙集理论,处理数据不确定性和噪声 | 优化模型的时空复杂度,降低计算 成本 | ||||||||
超短期风电功率 预测 | STGCNs (TCN) | 有向图,格兰杰因果关系 | 高,随数据规模增加,计算成本高 | 在多站点预测任务中表现优异,鲁棒性提升 | 构建有向图,时空相关性可解释性增强 | 过于依赖风电场间强依赖性 | ||||||||
优化 | 最优潮流 | 空间 GCNs | 物理引导的图 建模 | 较高,特别是大规模非线性问题 | 求解精度显著提高,尤其适用于非线性和拓扑变化场景 | 物理约束嵌入模型,提升预测精度,并考虑非线性约束 | 在极大规模或实时条件下受到计算时间限制 | |||||||
交流最优潮流 | GNNs | 加权无向图 | 高,处理IEEE-118节点系统,性能受限 | 在IEEE-30系统求解性能较其他对比方法更优,而IEEE-118系统中GNN性能不如IPOPT | 引入无监督学习,使用对数障碍惩罚函数处理非凸约束问题,无需标注数据 | 难以处理长距离传输线路的约束问题 | ||||||||
交流最优潮流 | GNNs | 无向图 | 分区和并行处理显著降低复杂度 | 在短训练时间内实现了AC-OPF高效求解,且约束违例极少 | 基于空间分解的两阶段并行学习方法,大幅提升大规模求解速度 | 在复杂或不规则电网拓扑中表现受限 | ||||||||
输电网潮流预测 | GNNs + 多任务 学习 | 静态图 | 计算复杂度中等,依赖于嵌入层的 计算 | 多节点潮流预测中表现显著优于传统方法,有效捕捉节点间依赖 | 使用贝叶斯嵌入层捕捉节点间依赖,提升局部差异表达 | 模型未考虑动态拓扑变化,依赖嵌入层的准确性 |
1 |
WITZE A. Extreme heatwaves: surprising lessons from the record warmth[J]. Nature, 2022, 608 (7923): 464- 465.
DOI |
2 | United Nations Framework Convention on Climate Change (UNFCCC). The paris agreement[Z], 2015. https://unfccc.int/sites/default/files/englis{\boldsymbol h}_paris_agreement.pdf. |
3 | 汤广福, 周静, 庞辉, 等. 能源安全格局下新型电力系统发展战略框架[J]. 中国工程科学, 2023, 25 (2): 79- 88. |
TANG Guangfu, ZHOU Jing, PANG Hui, et al. Strategic framework for new electric power system development under the energy security pattern[J]. Strategic Study of CAE, 2023, 25 (2): 79- 88. | |
4 |
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23 (6): 61- 69.
DOI |
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23 (6): 61- 69.
DOI |
|
5 | 叶林. 大规模风电并网运行调度和主动控制策略[M]. 北京: 科学出版社, 2024. |
6 | JAFARISHIADEH F, MOHAMMADI F, SAHRAEI-ARDAKANI M. Preventive dispatch for transmission de-icing[C]//2021 IEEE Power & Energy Society General Meeting (PESGM). Washington, DC, USA. IEEE, 2021: 1. |
7 |
LU P, ZHANG N, YE L, et al. Advances in model predictive control for large-scale wind power integration in power systems[J]. Advances in Applied Energy, 2024, 14, 100177.
DOI |
8 |
KOHLHEPP P, HARB H, WOLISZ H, et al. Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: a review of international field studies[J]. Renewable and Sustainable Energy Reviews, 2019, 101, 527- 547.
DOI |
9 | 马伟明. 关于电工学科前沿技术发展的若干思考[J]. 电工技术学报, 2021, 36 (22): 4627- 4636. |
MA Weiming. Thoughts on the development of frontier technology in electrical engineering[J]. Transactions of China Electrotechnical Society, 2021, 36 (22): 4627- 4636. | |
10 | 刘俊, 王勇, 杨胜春, 等. 新一代调控系统预调度架构及关键技术[J]. 电力系统自动化, 2019, 43 (22): 201- 208. |
LIU Jun, WANG Yong, YANG Shengchun, et al. Pre-dispatching architecture and key technologies of new generation dispatching and control system[J]. Automation of Electric Power Systems, 2019, 43 (22): 201- 208. | |
11 | 叶林, 裴铭, 李卓, 等. 风电和光伏发电功率联合预测与预调度框架[J]. 高电压技术, 2024, 50 (9): 3823- 3836. |
YE Lin, PEI Ming, LI Zhuo, et al. Framework for joint wind and photovoltaic power forecasting and pre-dispatch[J]. High Voltage Engineering, 2024, 50 (9): 3823- 3836. | |
12 | GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with LSTM[C]//1999 Ninth International Conference on Artificial Neural Networks ICANN 99. Edinburgh, UK. London: IET, 2002: 850–855. |
13 |
YUAN L, ZHANG H, XU M, et al. A multiscale CNN framework for wireless technique classification in Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9 (12): 10366- 10367.
DOI |
14 |
JIN X B, GONG W T, KONG J L, et al. PFVAE: a planar flow-based variational auto-encoder prediction model for time series data[J]. Mathematics, 2022, 10 (4): 610.
DOI |
15 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. MIT Press, 2014, 2, 2672- 2680. |
16 | KHODAYAR M, LIU G Y, WANG J H, et al. Deep learning in power systems research: a review[J]. CSEE Journal of Power and Energy Systems, 2021, 7 (2): 209- 220. |
17 |
YANG L X, ZHANG Z J. A deep attention convolutional recurrent network assisted by K-shape clustering and enhanced memory for short term wind speed predictions[J]. IEEE Transactions on Sustainable Energy, 2022, 13 (2): 856- 867.
DOI |
18 |
THIRUNAVUKKARASU M, SAWLE Y, LALA H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques[J]. Renewable and Sustainable Energy Reviews, 2023, 176, 113192.
DOI |
19 |
LIAO W L, BAK-JENSEN B, PILLAI J R, et al. A review of graph neural networks and their applications in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (2): 345- 360.
DOI |
20 |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80.
DOI |
21 | OWERKO D, GAMA F, RIBEIRO A. Predicting power outages using graph neural networks[C]//2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim, CA, USA, 2018: 743–747. |
22 | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43 (5): 755- 780. |
XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43 (5): 755- 780. | |
23 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (1): 4- 24.
DOI |
24 |
RAHMANI S, BAGHBANI A, BOUGUILA N, et al. Graph neural networks for intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (8): 8846- 8885.
DOI |
25 | 冯双, 彭祥佳, 陈佳宁, 等. 基于时空图卷积神经网络的强迫振荡定位与传播预测[J]. 中国电机工程学报, 2024, 44 (4): 1298- 1310. |
FENG Shuang, PENG Xiangjia, CHEN Jianing, et al. Forced oscillation location and propagation prediction based on temporal graph convolutional network[J]. Proceedings of the CSEE, 2024, 44 (4): 1298- 1310. | |
26 |
SIMEUNOVIĆ J, SCHUBNEL B, ALET P J, et al. Interpretable temporal-spatial graph attention network for multi-site PV power forecasting[J]. Applied Energy, 2022, 327, 120127.
DOI |
27 |
ZHUANG W, FAN J L, XIA M, et al. A multi-scale spatial–temporal graph neural network-based method of multienergy load forecasting in integrated energy system[J]. IEEE Transactions on Smart Grid, 2024, 15 (3): 2652- 2666.
DOI |
28 |
ZHAO Y N, YE L, PINSON P, et al. Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5029- 5040.
DOI |
29 |
HOSSAIN R R, HUANG Q H, HUANG R K. Graph convolutional network-based topology embedded deep reinforcement learning for voltage stability control[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4848- 4851.
DOI |
30 | 王渝红, 沈靖, 曾琦, 等. 基于谱图论和图卷积神经网络的直流电网节点电压估计研究[J]. 电网技术, 2022, 46 (2): 521- 531. |
WANG Yuhong, SHEN Jing, ZENG Qi, et al. Voltage estimation for DC grid nodes based on spectral theory and graph convolutional neural network[J]. Power System Technology, 2022, 46 (2): 521- 531. | |
31 | 李佳玮, 王小君, 和敬涵, 等. 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45 (6): 2113- 2121. |
LI Jiawei, WANG Xiaojun, HE Jinghan, et al. Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45 (6): 2113- 2121. | |
32 | 杨梅, 刘俊勇, 刘挺坚, 等. 节点图和边图切换卷积驱动的快速静态安全分析方法[J]. 电网技术, 2021, 45 (6): 2070- 2080. |
YANG Mei, LIU Junyong, LIU Tingjian, et al. Switching convolution of node graph and line graph-driven method for fast static security analysis[J]. Power System Technology, 2021, 45 (6): 2070- 2080. | |
33 | 陈立帆, 张琳琳, 宋辉, 等. 基于图卷积神经网络的输电线路自然灾害事故预测[J]. 电网技术, 2023, 47 (6): 2549- 2557. |
CHEN Lifan, ZHANG Linlin, SONG Hui, et al. Natural disaster accident prediction of transmission line based on graph convolution network[J]. Power System Technology, 2023, 47 (6): 2549- 2557. | |
34 |
LIAO W L, FANG J N, YE L, et al. Can we trust explainable artificial intelligence in wind power forecasting?[J]. Applied Energy, 2024, 376, 124273.
DOI |
35 |
LU P, YE L, ZHAO Y N, et al. Review of meta-heuristic algorithms for wind power prediction: methodologies, applications and challenges[J]. Applied Energy, 2021, 301, 117446.
DOI |
36 |
LIN W X, WU D, BOULET B. Spatial-temporal residential short-term load forecasting via graph neural networks[J]. IEEE Transactions on Smart Grid, 2021, 12 (6): 5373- 5384.
DOI |
37 |
WU D, LIN W X. Efficient residential electric load forecasting via transfer learning and graph neural networks[J]. IEEE Transactions on Smart Grid, 2023, 14 (3): 2423- 2431.
DOI |
38 |
KHODAYAR M, WANG J H. Spatio-temporal graph deep neural network for short-term wind speed forecasting[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (2): 670- 681.
DOI |
39 |
LI Z, YE L, ZHAO Y N, et al. A spatiotemporal directed graph convolution network for ultra-short-term wind power prediction[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (1): 39- 54.
DOI |
40 |
BEINERT D, HOLZHÜTER C, THOMAS J M, et al. Power flow forecasts at transmission grid nodes using graph neural networks[J]. Energy and AI, 2023, 14, 100262.
DOI |
41 |
LOPEZ-GARCIA T B, DOMÍNGUEZ-NAVARRO J A. Power flow analysis via typed graph neural networks[J]. Engineering Applications of Artificial Intelligence, 2023, 117, 105567.
DOI |
42 |
GAO M S, YU J, YANG Z F, et al. A physics-guided graph convolution neural network for optimal power flow[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 380- 390.
DOI |
43 | OWERKO D, GAMA F, RIBEIRO A. Unsupervised optimal power flow using graph neural networks[C]//ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Seoul, Korea, 2024: 6885–6889. |
44 |
CHATZOS M, MAK T W K, HENTENRYCK P V. Spatial network decomposition for fast and scalable AC-OPF learning[J]. IEEE Transactions on Power Systems, 2022, 37 (4): 2601- 2612.
DOI |
[1] | WANG Jinfeng, LI Jinpeng, XU Yinliang, LIU Haitao, HE Jinxiong, XU Jianyuan. Distributed Optimization for VPP and Distribution Network Operation Considering Uncertainty and Green Certificate Market [J]. Electric Power, 2025, 58(4): 21-30, 192. |
[2] | WANG Xiaodong, LI Qing, FU Deyi, LIU Yingming, WANG Ruojin. Fatigue Load Prediction of Wind Turbine Drive Train Based on CNN-BiLSTM [J]. Electric Power, 2025, 58(4): 90-97. |
[3] | Mingbing LI, Qiang LI, Xiyang GUAN, Haoyang ZHOU, Rui LU, Yankun FENG. Market Oriented Low-Carbon Optimal Scheduling of Virtual Power Plants Considering Multiple User-Side Resources Coordination [J]. Electric Power, 2025, 58(2): 66-76. |
[4] | Donglei SUN, Xian WANG, Yi SUN, Xiangfei MENG, Yongchen ZHANG, Yumin ZHANG. Polyhedral Uncertainty Set Based Power System Flexibility Quantitative Assessment [J]. Electric Power, 2024, 57(9): 146-155. |
[5] | Chunhao LU, Chunli ZHOU, Xiqiao LIN, Zhijun CHEN. Probabilistic Modeling Method of Hydrogen Load of Hydrogen Refueling Station Based on Vehicle Behavior Simulation [J]. Electric Power, 2024, 57(8): 46-54, 66. |
[6] | Haijun WANG, Rongrong JU, Yinghua DONG. Distributed Photovoltaic Power Interval Prediction Based on Spatio-Temporal Correlation Feature and B-LSTM Model [J]. Electric Power, 2024, 57(7): 74-80. |
[7] | Junying WU, Xin LU, Hong LIU, Bin ZHANG, Shouliang CHAI, Yunchun LIU, Jianan WANG. Ultra-short-term Multi-region Power Load Forecasting Based on Spearman-GCN-GRU Model [J]. Electric Power, 2024, 57(6): 131-140. |
[8] | Chuanqi WANG, Liwen WU, Zhibin DENG, Weifeng DENG, Bin YANG. Review of Icing Prediction Model and Algorithm for Overhead Transmission Lines Considering Time Cumulative Effects [J]. Electric Power, 2024, 57(6): 153-164, 234. |
[9] | Yuming YE, Qiqi QIAN, Zhengdong WAN, Jigang ZHANG. Prediction of Transmission Line Cost Based on Embedding Method and Ensemble Learning [J]. Electric Power, 2024, 57(5): 251-260. |
[10] | Yan GAO, Hanbin WU, Jixin ZHANG, Huaming ZHANG, Pei ZHANG. Day-Ahead Probabilistic Prediction Model for Photovoltaic Power Based on Combined Deep Learning [J]. Electric Power, 2024, 57(4): 100-110. |
[11] | Bilin SHAO, Danyang JI. Multi-feature Short-term Prediction of Power Load Components Based on VMD-SE [J]. Electric Power, 2024, 57(4): 162-170. |
[12] | Wenhua ZHAN, Jianfeng CHE, Bo WANG, Yu DING. A Grid-based Numerical Weather Prediction Method for Multi-output Prediction of Regional Photovoltaic Power [J]. Electric Power, 2024, 57(3): 144-151. |
[13] | Jie YAN, Jialin YANG, Hangyu WANG, Jiaoyang LU, Yongqian LIU, Lei ZHANG. Offshore Wind Farm Wake Deflection Control Based on Adaptive Wind Condition Prediction Error [J]. Electric Power, 2024, 57(3): 190-196. |
[14] | Wenfei YI, Weiping ZHU, Mingzhong ZHENG. Economic Dispatch of Microgrid Considering Data Center and Wind Power Uncertainty [J]. Electric Power, 2024, 57(2): 19-26. |
[15] | Hanru LI, Zhijian LIU, Liyong LAI, Lingyu HUANG, Shiyin DING, Ren LIU, Bo TANG. Current-carrying Capacity Probability Prediction of Overhead Transmission Line Considering Conditional Distribution Prediction Errors of Meteorological Parameters [J]. Electric Power, 2024, 57(2): 103-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||