Electric Power ›› 2025, Vol. 58 ›› Issue (4): 90-97.DOI: 10.11930/j.issn.1004-9649.202409072
• Key Technologies for Transient Operation Control and Test Verification of Wind Turbines • Previous Articles Next Articles
WANG Xiaodong1(), LI Qing1(
), FU Deyi2, LIU Yingming1, WANG Ruojin1
Received:
2024-09-18
Accepted:
2024-12-17
Online:
2025-04-23
Published:
2025-04-28
Supported by:
WANG Xiaodong, LI Qing, FU Deyi, LIU Yingming, WANG Ruojin. Fatigue Load Prediction of Wind Turbine Drive Train Based on CNN-BiLSTM[J]. Electric Power, 2025, 58(4): 90-97.
std( | std( | std( | std( | |||||||||||||
std( | – | – | ||||||||||||||
std( | – | – | ||||||||||||||
std( | ||||||||||||||||
std( | ||||||||||||||||
– | – | – | ||||||||||||||
– | – | |||||||||||||||
– | ||||||||||||||||
– | – |
Table 1 Correlation analysis results
std( | std( | std( | std( | |||||||||||||
std( | – | – | ||||||||||||||
std( | – | – | ||||||||||||||
std( | ||||||||||||||||
std( | ||||||||||||||||
– | – | – | ||||||||||||||
– | – | |||||||||||||||
– | ||||||||||||||||
– | – |
参数 | 区间 | 间隔 | ||
平均风速/(m·s–1) | 12~25 | 0.5 | ||
湍流强度/% | 10~24 | 0.2 | ||
风剪切系数 | 0.1~0.3 | 0.02 |
Table 2 Setting of relevant working conditions
参数 | 区间 | 间隔 | ||
平均风速/(m·s–1) | 12~25 | 0.5 | ||
湍流强度/% | 10~24 | 0.2 | ||
风剪切系数 | 0.1~0.3 | 0.02 |
模型 | R2 | EMA/(kN·m) | ERMS/(kN·m) | EMAP | ||||
CNN-BiLSTM | ||||||||
LSTM | ||||||||
DNN |
Table 3 Comparison of evaluation indexes of three fatigue load models of wind turbine drive systems
模型 | R2 | EMA/(kN·m) | ERMS/(kN·m) | EMAP | ||||
CNN-BiLSTM | ||||||||
LSTM | ||||||||
DNN |
1 | 薛磊. 大型风电机组载荷监测与延寿评估技术研究[D]. 太原: 山西大学, 2020. |
XUE Lei. Research on load monitoring and life time extension assessment technology of large wind turbine[D]. Taiyuan: Shanxi University, 2020. | |
2 | 宾世杨, 张振, 唐俊杰, 等. 基于机器学习的风电机组机械传动系统故障诊断研究[J]. 机械与电子, 2024, 42 (1): 11- 15. |
BIN Shiyang, ZHANG Zhen, TANG Junjie, et al. Research on fault diagnosis of wind turbine mechanical transmission system based on machine learning[J]. Machinery & Electronics, 2024, 42 (1): 11- 15. | |
3 | 张磊, 王满康, 随权, 等. 考虑场间-场内风电机组疲劳载荷均衡的海上风氢系统灵活调度[J]. 电力系统保护与控制, 2024, 52 (21): 151- 160. |
ZHANG Lei, WANG Mankang, SUI Quan, et al. Flexible scheduling of offshore wind-hydrogen systems considering inter-and intra-field turbine fatigue load balancing[J]. Power System Protection and Control, 2024, 52 (21): 151- 160. | |
4 | 姚兴佳, 谢洪放, 朱江生, 等. 基于LMI的5MW海上风力发电机组载荷控制技术研究[J]. 可再生能源, 2016, 34 (1): 44- 48. |
YAO Xingjia, XIE Hongfang, ZHU Jiangsheng, et al. LMI-based load control for 5 MW offshore wind turbine[J]. Renewable Energy Resources, 2016, 34 (1): 44- 48. | |
5 |
LI Z P, YANG S Y, ZHANG F, et al. Analysis of load characteristics of wind turbine blade root bolts under loosened and fractured conditions[J]. Journal of Mechanical Science and Technology, 2024, 38 (4): 1731- 1741.
DOI |
6 |
ZHAO H R, WU Q W, HUANG S J, et al. Fatigue load sensitivity-based optimal active power dispatch for wind farms[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (3): 1247- 1259.
DOI |
7 |
KNUDSEN T, BAK T, SVENSTRUP M. Survey of wind farm control: power and fatigue optimization[J]. Wind Energy, 2015, 18 (8): 1333- 1351.
DOI |
8 | XIAOPENG Z, DING J, QIANG Z. The Application of Rain-Flow Counting Method in the Analysis of Load Spectrum[J]. Science & Technology Review, 2009, 27 (3): 67- 73. |
9 |
WEBER F, WU H R, STARKE P. A new short-time procedure for fatigue life evaluation based on the linear damage accumulation by Palmgren–Miner[J]. International Journal of Fatigue, 2023, 172, 107653.
DOI |
10 |
MONTAVON G, SAMEK W, MÜLLER K R. Methods for interpreting and understanding deep neural networks[J]. Digital Signal Processing, 2018, 73, 1- 15.
DOI |
11 | 王伟, 王海云. 基于Adam优化BP神经网络的风机等效疲劳载荷预测[J]. 现代电子技术, 2023, 46 (17): 102- 106. |
WANG Wei, WANG Haiyun. Wind turbine equivalent fatigue load prediction based on Adam optimized BP neural network[J]. Modern Electronics Technique, 2023, 46 (17): 102- 106. | |
12 | 巫发明, 李晔, 杨从新, 等. 风电机组传动链动态载荷识别算法及验证[J]. 振动测试与诊断, 2022, 42(4): 664-670, 822. |
WU Faming, LI Ye, YANG Congxin, et al. Dynamic load identification algorithm and verification of wind turbine drive train[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(4): 664-670, 822. | |
13 | 卢晓光, 李凤格. 基于数字孪生的风机实时载荷预估研究[J]. 机械与电子, 2021, 39 (6): 24- 28, 34. |
LU Xiaoguang, LI Fengge. Real time load prediction of wind turbine based on digital twin[J]. Machinery & Electronics, 2021, 39 (6): 24- 28, 34. | |
14 |
ZHANG B H, SOLTANI M, HU W H, et al. Optimized power dispatch in wind farms for power maximizing considering fatigue loads[J]. IEEE Transactions on Sustainable Energy, 2018, 9 (2): 862- 871.
DOI |
15 | 彭超. 风力发电机组传动链调谐惯量阻尼器研究[J]. 太阳能学报, 2018, 39 (7): 2036- 2043. |
PENG Chao. Research of tuned inertia damper for wind turbine drive train[J]. Acta Energiae Solaris Sinica, 2018, 39 (7): 2036- 2043. | |
16 | 刘颖明, 赵哲, 王晓东, 等. 考虑机组疲劳载荷的风电集群有功功率分配方法[J]. 太阳能学报, 2021, 42 (5): 430- 436. |
LIU Yingming, ZHAO Zhe, WANG Xiaodong, et al. Active power distribution method for wind farm cluster based on cluster analysis[J]. Acta Energiae Solaris Sinica, 2021, 42 (5): 430- 436. | |
17 | 张斌, 朱春生, 贾鈜崴, 等. 数据驱动的风电机组传动系统疲劳载荷计算与主动抑制研究[J]. 智慧电力, 2023, 51 (1): 24- 30. |
ZHANG Bin, ZHU Chunsheng, JIA Hongwei, et al. Fatigue load calculation and active suppression of wind turbine transmission system based on data-driven method[J]. Smart Power, 2023, 51 (1): 24- 30. | |
18 | Wind turbines - Part 13: Measurement of mechanical loads: IEC 61400-13[S]. 2015. |
19 | 臧海祥, 赵勇凯, 张越, 等. 基于低风速功率修正和损失函数改进的超短期风电功率预测[J]. 电力系统自动化, 2024, 48 (7): 248- 257. |
ZANG Haixiang, ZHAO Yongkai, ZHANG Yue, et al. Ultra-short-term wind power prediction based on power correction under low wind speed and improved loss function[J]. Automation of Electric Power Systems, 2024, 48 (7): 248- 257. | |
20 | 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41 (12): 3797- 3802. |
ZHU Qiaomu, LI Hongyi, WANG Ziqi, et al. Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41 (12): 3797- 3802. | |
21 | CHAI Z K. BiLSTM short-term wind power prediction based on attention mechanism[C]//2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI). Changchun, China. IEEE, 2023: 1341–1346. |
22 |
SHEN Y Z, TANG B P, LI B, et al. Remaining useful life prediction of rolling bearing based on multi-head attention embedded Bi-LSTM network[J]. Measurement, 2022, 202, 111803.
DOI |
[1] | JI Zhanyang, HU Yang, KONG Lingxing, SONG Ziqiu, DENG Dan, LIU Jizhen. Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics [J]. Electric Power, 2025, 58(4): 56-67. |
[2] | Hongzhong MA, Wenjing XUAN, Muyu ZHU, Yuelin CHEN. SOC Estimation of Large Capacity Lithium Batteries Based on LWOA-LSTM [J]. Electric Power, 2024, 57(6): 37-44. |
[3] | Junying WU, Xin LU, Hong LIU, Bin ZHANG, Shouliang CHAI, Yunchun LIU, Jianan WANG. Ultra-short-term Multi-region Power Load Forecasting Based on Spearman-GCN-GRU Model [J]. Electric Power, 2024, 57(6): 131-140. |
[4] | YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, WANG Chengmin, XIE Ning. State Recognition of Wind Turbines Based on K-means and BPNN [J]. Electric Power, 2023, 56(6): 158-166,175. |
[5] | LI Bohao, GUO Kunli, LV Jiajun, CAI Weizheng, LIU Luhao, LIU Fengyi, HAO Yifan. Inhibition of Subsynchronous Oscillation of Direct-Drive Wind Turbine by Improved LADRC in Weak Grids [J]. Electric Power, 2023, 56(4): 56-67. |
[6] | Tiejiang YUAN, Yijin ZHANG, Zijuan YANG, Dongfang JIANG. Medium and Long-Term Hydrogen Load Prediction Based on System Dynamics [J]. Electric Power, 2023, 56(10): 11-21. |
[7] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[8] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[9] | Lei WANG, Yibing LIU, Wei TENG, Xinwei HUANG, Jiantao LIU. Research and Development of Nondestructive Detection Technology for Wind Turbine Blades [J]. Electric Power, 2023, 56(10): 80-95. |
[10] | Yuhui WU, Yangfan ZHANG, Feng GAO, Yu WANG, Yaohan WANG, Weixin YANG, Hong ZHANG. Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis [J]. Electric Power, 2023, 56(10): 106-114. |
[11] | LI Qian, GOU Luyang, LI Fan, ZHANG Anan, ZHENG Yadi, ZHOU Xipeng. System Flexibility-Oriented Optimized Unit Operation in Wind Farms [J]. Electric Power, 2022, 55(8): 23-30. |
[12] | ZHOU Shijia, YANG Guangyuan, PENG Guangqiang, WU Jiyang, XIN Qingming. Fault-Tolerant Control Strategy Based on Multi-Phase Wind Power System [J]. Electric Power, 2022, 55(7): 134-141. |
[13] | WANG Yuhang, WANG Wenling, ZHOU Xuhong, WANG Kang, LUO Yintao. Optimization and Response Analysis of Floating Truss Foundation for Offshore Wind Turbine [J]. Electric Power, 2022, 55(5): 21-31. |
[14] | SUN Sujuan, HUO Qiantao, SUN Lixin, GUO Liang, WANG Rui, KONG Xiangmei. Mechanism Analysis and Suppression Strategy of Torsional Vibrations of DFIG Shaft System Considering Torque Control of Wind Turbine [J]. Electric Power, 2022, 55(5): 39-46. |
[15] | JIA Rui, YANG Guohua, ZHENG Haofeng, ZHANG Honghao, LIU Xuan, YU Hang. Combined Wind Power Prediction Method Based on CNN-LSTM&GRU with Adaptive Weights [J]. Electric Power, 2022, 55(5): 47-56,110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||