[1] 杨昆. 推动实现碳达峰、碳中和 加快构建以新能源为主体的新型电力系统[J]. 中国电业, 2021(5): 8–11 [2] 颜熹, 宁立伟, 魏克湘, 等. 新型格构式风机塔架结构设计与分析[J]. 湖南工程学院学报(自然科学版), 2017, 27(3): 25–30 YAN Xi, NING Liwei, WEI Kexiang, et al. Design and analysis of new-type lattice towers for wind turbines[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2017, 27(3): 25–30 [3] 彭文兵, 阳荣昌, 马人乐, 等. 格构式风机塔架设计中的特殊问题[J]. 钢结构(中英文), 2019, 34(6): 75–77,106 PENG Wenbing, YANG Rongchang, MA Renle, et al. Special problems in the design of lattice wind turbine tower[J]. Steel Construction, 2019, 34(6): 75–77,106 [4] 孟珣. 基于动力特性的海上风力发电支撑结构优化技术研究[D]. 青岛: 中国海洋大学, 2010. MENG Xun. Optimum technology on support structures of offshore wind turbine based on dynamic properties[D]. Qingdao: Ocean University of China, 2010. [5] MORISON. J. R. The force exerted by surface waves in piles[J]. Petrolem Transaction AIME., 1950(189): 149–157. [6] MACCAMY R C, FUCHS R A. Wave forces on piles: a diffraction theory[J]. US Army Corpsof Engineering, Beach Erosion Board, 1954(69): 75–86. [7] JONKMAN J M, MATHA D. Dynamics of offshore floating wind turbines—analysis of three concepts[J]. Wind Energy, 2011, 14(4): 557–569. [8] HALL M, BUCKHAM B, CRAWFORD C. Hydrodynamics-based floating wind turbine support platform optimization: a basis function approach[J]. Renewable Energy, 2014, 66: 559–569. [9] 丁勤卫, 李春, 成欣, 等. 漂浮式风力机驳船式平台响应特性分析[J]. 上海理工大学学报, 2015, 37(5): 425–432 DING Qinwei, LI Chun, CHENG Xin, et al. Performance of barge platform for floating wind turbines[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(5): 425–432 [10] THOMSEN J B, TêTU A, STIESDAL H. A comparative investigation of prevalent hydrodynamic modelling approaches for floating offshore wind turbine foundations: a TetraSpar case study[J]. Journal of Marine Science and Engineering, 2021, 9(7): 683. [11] GOUPEE A J, KOO B J, KIMBALL R W, et al. Experimental comparison of three floating wind turbine concepts[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 020906. [12] 易乾. 南海海域风浪条件下浮式风机动力响应及构型参数研究[D]. 北京: 清华大学, 2017. YI Qian. Research on dynamics response and structural properties of floating wind turbines under wind-wave condition in South China Sea[D]. Beijing: Tsinghua University, 2017. [13] 邓露, 吴松熊, 钟文杰, 等. 风浪夹角变化对海上浮式风机系泊的影响[J]. 土木工程与管理学报, 2018, 35(1): 1–6 DENG Lu, WU Songxiong, ZHONG Wenjie, et al. Influence of wind-wave intersection angle change on the mooring system of floating offshore wind turbines[J]. Journal of Civil Engineering and Management, 2018, 35(1): 1–6 [14] 黄俊. 海上浮式风力发电机组载荷及结构性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. HUANG Jun. On study of loads and structural strength of the offshore floating wind turbine[D]. Harbin: Harbin Engineering University, 2010. [15] 潘祖兴, 吴关叶, 赵生校, 等. 海上桁架式风机基础过渡段拓扑优化方法[J]. 中国海洋平台, 2019, 34(4): 6–13 PAN Zuxing, WU Guanye, ZHAO Shengxiao, et al. Topology optimization method for transition pieces of offshore jacket wind turbine foundations[J]. China Offshore Platform, 2019, 34(4): 6–13 [16] 孙寅博. 桁架结构漂浮式海上风机初步设计及性能研究[D]. 镇江: 江苏科技大学, 2020. SUN Yinbo. Preliminary design and performance study of floating offshore wind turbine with truss structure[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. [17] 张浩, 王宇航, 闫渤文, 等. 风浪联合作用下的钢格构式基础海上浮式风机耦合动力响应分析[J]. 建筑钢结构进展, 2021, 23(3): 85–96 ZHANG Hao, WANG Yuhang, YAN Bowen, et al. A coupled dynamic response analysis of a steel truss foundation for floating offshore wind turbine under wind-wave actions[J]. Progress in Steel Building Structures, 2021, 23(3): 85–96 [18] 范子谦, 陈超核. 小功率海上半潜式风机浮式基础群水动力性能研究[J]. 船舶工程, 2019, 41(增刊1): 434–439 FAN Ziqian, CHEN Chaohe. Analysis of hydrodynamic performance of semi-submersible floating foundation group[J]. Ship Engineering, 2019, 41(S1): 434–439 [19] 刘周, 樊天慧, 陈超核, 等. 3种典型半潜式浮式风机基础水动力性能比较[J]. 中国海洋平台, 2021, 36(2): 1–10 LIU Zhou, FAN Tianhui, CHEN Chaohe, et al. Comparison on hydrodynamic performance of three kinds of typical semi-submersible floating foundations of offshore wind turbine[J]. China Offshore Platform, 2021, 36(2): 1–10 [20] 马远. Spar型浮式风电基础的水动力响应分析及其锚泊系统优化[D]. 广州: 华南理工大学, 2020. MA Yuan. Hydrodynamic response analysis and mooring system optimization of a Spar floating wind turbine platform[D]. Guangzhou: South China University of Technology, 2020. [21] 刘毅. 单柱式浮式风机结构强度分析方法研究[D]. 上海: 上海交通大学, 2014. LIU Yi. A structural strength analysis method for spar type floating offshore wind turbine[D]. Shanghai: Shanghai Jiao Tong University, 2014. [22] FALTINSEN O M. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1990. [23] 赵永生. 新型多立柱张力腿型浮式风力机概念设计与耦合动力特性研究[D]. 上海: 上海交通大学, 2018. ZHAO Yongsheng. Conceptual design and coupled dynamic analysis of a novel multi-column tension-leg-type floating wind turbine[D]. Shanghai: Shanghai Jiao Tong University, 2018. [24] 王强, 廖康平, 马庆位, 等. 海上浮式风机耦合运动响应的研究[C]//第十九届中国海洋(岸)工程学术讨论会. 中国海洋工程学会: 中国海洋学会海洋工程分会, 2019: 5.
|