Electric Power ›› 2023, Vol. 56 ›› Issue (10): 106-114.DOI: 10.11930/j.issn.1004-9649.202303035
• Key Technology of Active Support and Operation Control Monitoring of Wind Turbine and Farm • Previous Articles Next Articles
Yuhui WU1(), Yangfan ZHANG1, Feng GAO2, Yu WANG1, Yaohan WANG1, Weixin YANG1, Hong ZHANG2
Received:
2023-03-07
Accepted:
2023-06-05
Online:
2023-10-23
Published:
2023-10-28
Supported by:
Yuhui WU, Yangfan ZHANG, Feng GAO, Yu WANG, Yaohan WANG, Weixin YANG, Hong ZHANG. Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis[J]. Electric Power, 2023, 56(10): 106-114.
模态 | 传递率法 | 力锤法 | ||||||
频率/Hz | 阻尼比/% | 频率/Hz | 阻尼比/% | |||||
一阶模态 | 7.69 | 2.00 | 7.56 | 3.76 | ||||
二阶模态 | 16.92 | 1.32 | 17.71 | 1.49 | ||||
三阶模态 | 33.74 | 0.79 | 35.36 | 0.76 | ||||
四阶模态 | 48.38 | 0.28 | 48.35 | 0.30 | ||||
五阶模态 | 52.00 | 0.33 | 52.43 | 0.50 | ||||
六阶模态 | 67.25 | 0.29 | 66.26 | 0.40 |
Table 1 Comparison of modal parameter identification results
模态 | 传递率法 | 力锤法 | ||||||
频率/Hz | 阻尼比/% | 频率/Hz | 阻尼比/% | |||||
一阶模态 | 7.69 | 2.00 | 7.56 | 3.76 | ||||
二阶模态 | 16.92 | 1.32 | 17.71 | 1.49 | ||||
三阶模态 | 33.74 | 0.79 | 35.36 | 0.76 | ||||
四阶模态 | 48.38 | 0.28 | 48.35 | 0.30 | ||||
五阶模态 | 52.00 | 0.33 | 52.43 | 0.50 | ||||
六阶模态 | 67.25 | 0.29 | 66.26 | 0.40 |
损伤程度 | 质量/kg | 刚度/(N·m2) | 阻尼/% | 厚度/m | 弦长/m | |||||
未损伤 | 1867.46 | 摆振:7.229×109 挥舞:1.022×1010 | 0.477465 | 4.167 | 4.167 | |||||
轻微损伤 | 1867.46 | 摆振:6.506×109 挥舞:9.198×109 | 0.477465 | 4.167 | 4.167 | |||||
严重损伤 | 1867.46 | 摆振:4.379×109 挥舞:6.132×109 | 0.477465 | 4.167 | 4.167 |
Table 2 Comparison of blade unit 2 parameters before and after blade damage
损伤程度 | 质量/kg | 刚度/(N·m2) | 阻尼/% | 厚度/m | 弦长/m | |||||
未损伤 | 1867.46 | 摆振:7.229×109 挥舞:1.022×1010 | 0.477465 | 4.167 | 4.167 | |||||
轻微损伤 | 1867.46 | 摆振:6.506×109 挥舞:9.198×109 | 0.477465 | 4.167 | 4.167 | |||||
严重损伤 | 1867.46 | 摆振:4.379×109 挥舞:6.132×109 | 0.477465 | 4.167 | 4.167 |
是否损伤 | 功率标准差 | 转速标准差 | 加速度标准差 | 位移标准差 | ||||
未损伤 | 1.4782 | 21.6566 | 0.2804 | 0.4503 | ||||
损伤 | 1.4805 | 21.6661 | 0.2837 | 0.4816 |
Table 3 Comparison of standard deviation of parameters before and after blade damage
是否损伤 | 功率标准差 | 转速标准差 | 加速度标准差 | 位移标准差 | ||||
未损伤 | 1.4782 | 21.6566 | 0.2804 | 0.4503 | ||||
损伤 | 1.4805 | 21.6661 | 0.2837 | 0.4816 |
是否损伤 | 一阶模态 | 二阶模态 | 三阶模态 | |||||||||||||||
频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | ||||||||||
未损伤 | 0.0446 | 42.6378 | –0.7404 | 1.7468 | 23.2733 | 12.0225 | 2.3003 | 6.1306 | 1.9180 | |||||||||
损伤 | 0.0375 | 40.7837 | –0.7404 | 1.2910 | 39.0945 | –0.0119 | 2.3611 | 24.9857 | –0.0054 |
Table 4 Comparison of low-order modal parameters before and after blade damage
是否损伤 | 一阶模态 | 二阶模态 | 三阶模态 | |||||||||||||||
频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | ||||||||||
未损伤 | 0.0446 | 42.6378 | –0.7404 | 1.7468 | 23.2733 | 12.0225 | 2.3003 | 6.1306 | 1.9180 | |||||||||
损伤 | 0.0375 | 40.7837 | –0.7404 | 1.2910 | 39.0945 | –0.0119 | 2.3611 | 24.9857 | –0.0054 |
桨距角/(°) | 频率/Hz | 阻尼比/% | 振型系数 | |||
2.5 | 0.0446 | 42.6378 | –0.7404 | |||
5.6 | 0.0448 | 42.6077 | –0.7387 | |||
7.8 | 0.0483 | 42.5235 | –0.6360 | |||
9.7 | 0.0486 | 42.3018 | –0.5432 | |||
11.3 | 0.0487 | 41.9677 | –0.5315 | |||
12.8 | 0.0488 | 41.8823 | –0.5424 | |||
14.2 | 0.0588 | 41.6375 | –0.4406 |
Table 5 Table of first-order modal parameters at different pitch angles
桨距角/(°) | 频率/Hz | 阻尼比/% | 振型系数 | |||
2.5 | 0.0446 | 42.6378 | –0.7404 | |||
5.6 | 0.0448 | 42.6077 | –0.7387 | |||
7.8 | 0.0483 | 42.5235 | –0.6360 | |||
9.7 | 0.0486 | 42.3018 | –0.5432 | |||
11.3 | 0.0487 | 41.9677 | –0.5315 | |||
12.8 | 0.0488 | 41.8823 | –0.5424 | |||
14.2 | 0.0588 | 41.6375 | –0.4406 |
数据集 | 包含数据 | |
1 | 机组运行参数 | |
2 | 叶片振动加速度 | |
3 | 叶片模态参数 | |
4 | 机组运行参数、叶片振动加速度 | |
5 | 机组运行参数、叶片模态参数 | |
6 | 机组运行参数、叶片振动加速度、叶片模态参数 |
Table 6 Data types of different data sets
数据集 | 包含数据 | |
1 | 机组运行参数 | |
2 | 叶片振动加速度 | |
3 | 叶片模态参数 | |
4 | 机组运行参数、叶片振动加速度 | |
5 | 机组运行参数、叶片模态参数 | |
6 | 机组运行参数、叶片振动加速度、叶片模态参数 |
数据集 | 不同模型准确率/% | |||||||||
SVM | DT | RF | LightGBM | |||||||
1 | 训练集 | 49.74 | 64.01 | 82.00 | 83.98 | |||||
测试集 | 49.02 | 53.32 | 59.18 | 60.22 | ||||||
2 | 训练集 | 50.06 | 68.03 | 74.87 | 73.00 | |||||
测试集 | 48.24 | 51.30 | 50.78 | 56.12 | ||||||
3 | 训练集 | 50.52 | 86.00 | 92.00 | 92.97 | |||||
测试集 | 49.15 | 83.98 | 88.54 | 89.06 | ||||||
4 | 训练集 | 94.99 | 92.70 | 96.00 | 98.99 | |||||
测试集 | 93.42 | 90.25 | 93.75 | 97.98 | ||||||
5 | 训练集 | 97.00 | 96.12 | 98.00 | 100.00 | |||||
测试集 | 94.73 | 95.99 | 97.66 | 100.00 | ||||||
6 | 训练集 | 100.00 | 98.04 | 99.00 | 100.00 | |||||
测试集 | 99.41 | 97.65 | 98.89 | 100.00 |
Table 7 Recognition results of different data sets under different classification models
数据集 | 不同模型准确率/% | |||||||||
SVM | DT | RF | LightGBM | |||||||
1 | 训练集 | 49.74 | 64.01 | 82.00 | 83.98 | |||||
测试集 | 49.02 | 53.32 | 59.18 | 60.22 | ||||||
2 | 训练集 | 50.06 | 68.03 | 74.87 | 73.00 | |||||
测试集 | 48.24 | 51.30 | 50.78 | 56.12 | ||||||
3 | 训练集 | 50.52 | 86.00 | 92.00 | 92.97 | |||||
测试集 | 49.15 | 83.98 | 88.54 | 89.06 | ||||||
4 | 训练集 | 94.99 | 92.70 | 96.00 | 98.99 | |||||
测试集 | 93.42 | 90.25 | 93.75 | 97.98 | ||||||
5 | 训练集 | 97.00 | 96.12 | 98.00 | 100.00 | |||||
测试集 | 94.73 | 95.99 | 97.66 | 100.00 | ||||||
6 | 训练集 | 100.00 | 98.04 | 99.00 | 100.00 | |||||
测试集 | 99.41 | 97.65 | 98.89 | 100.00 |
1 | YANG X Y, ZHANG Y F, LV W, et al. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier[J]. Renewable Energy, 2021, 163, 386- 397. |
2 | 王雪平, 张建斐, 李万润, 等. 基于机器视觉的风电叶片风沙侵蚀程度检测方法研究[J]. 太阳能学报, 2020, 41 (5): 166- 173. |
WANG Xueping, ZHANG Jianfei, LI Wanrun, et al. Study on monitoring method of wind power blades erosion severity under wind-sand storm based on machine vision technology[J]. Acta Energiae Solaris Sinica, 2020, 41 (5): 166- 173. | |
3 |
赵肖懿, 董朝轶, 周鹏, 等. 基于无人机机器视觉的风力机叶片损伤诊断研究[J]. 太阳能学报, 2021, 42 (7): 390- 397.
DOI |
ZHAO Xiaoyi, DONG Chaoyi, ZHOU Peng, et al. Diagnosis of wind power generator blade damage based on unmanned aerial vehicle machine vision[J]. Acta Energiae Solaris Sinica, 2021, 42 (7): 390- 397.
DOI |
|
4 | 吴晓伦. 基于深度学习的大型风电机组叶片表面损伤边云协同检测架构及方法研究[D]. 北京: 华北电力大学, 2021. |
WU Xiaolun. Research on collaborative detection framework and method of edge cloud for blade surface damage of large wind turbine based on deep learning[D]. Beijing: North China Electric Power University, 2021. | |
5 | CHEN B, YU S, YU Y, et al. Acoustical damage detection of wind turbine blade using the improved incremental support vector data description[J]. Renewable Energy, 2020, 156, 548- 557. |
6 |
BEALE C, NIEZRECKI C, INALPOLAT M. An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades[J]. Mechanical Systems and Signal Processing, 2020, 142, 106754.
DOI |
7 |
XU D, LIU P F, CHEN Z P. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission[J]. Composite Structures, 2021, 255, 112954.
DOI |
8 |
ZHANG Y N, AVALLONE F, WATSON S. Wind turbine blade trailing edge crack detection based on airfoil aerodynamic noise: an experimental study[J]. Applied Acoustics, 2022, 191, 108668.
DOI |
9 | 张亚楠. 基于声发射信号处理的风力机叶片损伤演化研究[D]. 沈阳: 沈阳工业大学, 2020. |
ZHANG Yanan. Study on damage evolution of wind turbine blades based on acoustic emission signal processing[D]. Shenyang: Shenyang University of Technology, 2020. | |
10 | OH K Y, PARK J Y, LEE J S, et al. A novel method and its field tests for monitoring and diagnosing blade health for wind turbines[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (6): 1726- 1733. |
11 |
SIERRA-PÉREZ J, TORRES-ARREDONDO M A, GÜEMES A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison[J]. Composite Structures, 2016, 135, 156- 166.
DOI |
12 |
DOWNEY A, UBERTINI F, LAFLAMME S. Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168, 288- 296.
DOI |
13 |
GARCÍA D, TCHERNIAK D. An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator[J]. Mechanical Systems and Signal Processing, 2019, 127, 102- 119.
DOI |
14 |
TCHERNIAK D, MØLGAARD L L. Active vibration-based structural health monitoring system for wind turbine blade: demonstration on an operating Vestas V27 wind turbine[J]. Structural Health Monitoring:an International Journal, 2017, 16 (5): 536- 550.
DOI |
15 |
JOSHUVA A, SUGUMARAN V. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: a comparative study[J]. ISA Transactions, 2017, 67, 160- 172.
DOI |
16 |
JIANG S C, LIN P, CHEN Y M, et al. Mixed-signal extraction and recognition of wind turbine blade multiple-area damage based on improved Fast-ICA[J]. Optik, 2019, 179, 1152- 1159.
DOI |
17 |
LEE K, AIHARA A, PUNTSAGDASH G, et al. Feasibility study on a strain based deflection monitoring system for wind turbine blades[J]. Mechanical Systems and Signal Processing, 2017, 82, 117- 129.
DOI |
18 |
DONG X F, LIAN J J, WANG H J, et al. Structural vibration monitoring and operational modal analysis of offshore wind turbine structure[J]. Ocean Engineering, 2018, 150, 280- 297.
DOI |
19 |
JARAMILLO F, GUTIÉRREZ J M, ORCHARD M, et al. A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades[J]. Mechanical Systems and Signal Processing, 2022, 174, 109067.
DOI |
20 |
PACHECO-CHÉRREZ J, PROBST O. Vibration-based damage detection in a wind turbine blade through operational modal analysis under wind excitation[J]. Materials Today:Proceedings, 2022, 56, 291- 297.
DOI |
21 |
MOVSESSIAN A, GARCÍA CAVA D, TCHERNIAK D. An artificial neural network methodology for damage detection: demonstration on an operating wind turbine blade[J]. Mechanical Systems and Signal Processing, 2021, 159, 107766.
DOI |
22 | 张鑫. 深度学习在风机叶片结构损伤识别中的仿真研究[D]. 兰州: 兰州交通大学, 2016. |
ZHANG Xin. Simulation research on deep learning in wind trbine blade structural damage identification[D]. Lanzhou: Lanzhou Jiatong University, 2016. | |
23 | 李芒芒. 风力机叶片机械损伤动态监测方法与技术研究[D]. 长沙: 长沙理工大学, 2012. |
LI Mangmang. Research on dynamic monitoring method and technology of mechanical damage of wind turbine blades[D]. Changsha: Changsha University of Science & Technology, 2012. | |
24 | 李孟珠, 刘纲, 黎华, 等. 大型风力机叶片状态监测方法研究进展[J]. 热力发电, 2022, 51 (12): 18- 29. |
LI Mengzhu, LIU Gang, LI Hua, et al. Research progress of blade condition monitoring methods for large wind turbines[J]. Thermal Power Generation, 2022, 51 (12): 18- 29. | |
25 | 廖礼. 风力机叶片模态分析及应用[D]. 北京: 华北电力大学, 2021. |
LIAO Li. Modal analysis and application of wind turbine blades[D]. Beijing: North China Electric Power University, 2021. |
[1] | JI Zhanyang, HU Yang, KONG Lingxing, SONG Ziqiu, DENG Dan, LIU Jizhen. Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics [J]. Electric Power, 2025, 58(4): 56-67. |
[2] | WANG Xiaodong, LI Qing, FU Deyi, LIU Yingming, WANG Ruojin. Fatigue Load Prediction of Wind Turbine Drive Train Based on CNN-BiLSTM [J]. Electric Power, 2025, 58(4): 90-97. |
[3] | Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field [J]. Electric Power, 2025, 58(3): 142-150. |
[4] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[5] | YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, WANG Chengmin, XIE Ning. State Recognition of Wind Turbines Based on K-means and BPNN [J]. Electric Power, 2023, 56(6): 158-166,175. |
[6] | LIU Shoucheng, WANG Chun, ZOU Zhihui, CHEN Jiahui, ZHOU Han, LIU Wei, ZHANG Xu. Phase Identification of Low Voltage Distribution Network Based on t-SNE Dimension Reduction and Affinity Propagation Clustering Algorithm [J]. Electric Power, 2023, 56(5): 108-117. |
[7] | LI Bohao, GUO Kunli, LV Jiajun, CAI Weizheng, LIU Luhao, LIU Fengyi, HAO Yifan. Inhibition of Subsynchronous Oscillation of Direct-Drive Wind Turbine by Improved LADRC in Weak Grids [J]. Electric Power, 2023, 56(4): 56-67. |
[8] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[9] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[10] | Lei WANG, Yibing LIU, Wei TENG, Xinwei HUANG, Jiantao LIU. Research and Development of Nondestructive Detection Technology for Wind Turbine Blades [J]. Electric Power, 2023, 56(10): 80-95. |
[11] | LI Qian, GOU Luyang, LI Fan, ZHANG Anan, ZHENG Yadi, ZHOU Xipeng. System Flexibility-Oriented Optimized Unit Operation in Wind Farms [J]. Electric Power, 2022, 55(8): 23-30. |
[12] | ZHOU Shijia, YANG Guangyuan, PENG Guangqiang, WU Jiyang, XIN Qingming. Fault-Tolerant Control Strategy Based on Multi-Phase Wind Power System [J]. Electric Power, 2022, 55(7): 134-141. |
[13] | WANG Yuhang, WANG Wenling, ZHOU Xuhong, WANG Kang, LUO Yintao. Optimization and Response Analysis of Floating Truss Foundation for Offshore Wind Turbine [J]. Electric Power, 2022, 55(5): 21-31. |
[14] | SUN Sujuan, HUO Qiantao, SUN Lixin, GUO Liang, WANG Rui, KONG Xiangmei. Mechanism Analysis and Suppression Strategy of Torsional Vibrations of DFIG Shaft System Considering Torque Control of Wind Turbine [J]. Electric Power, 2022, 55(5): 39-46. |
[15] | CAI Weizheng, GUO Kunli, LIU Luyu, WU Chaojun. Subsynchronous Oscillation Mitigation Strategy Based on First-Order LADRC for Direct-Drive Wind Turbines [J]. Electric Power, 2022, 55(4): 175-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||