Electric Power ›› 2025, Vol. 58 ›› Issue (9): 194-204, 218.DOI: 10.11930/j.issn.1004-9649.202411059
• Power Market • Previous Articles Next Articles
HUANGFU Xiaowen1(
), LI Ke1, XU Changqing1, JIANG Xiaoliang1, YU Haozheng1, WANG Rujing2(
)
Received:2024-11-18
Online:2025-09-26
Published:2025-09-28
Supported by:HUANGFU Xiaowen, LI Ke, XU Changqing, JIANG Xiaoliang, YU Haozheng, WANG Rujing. Decentralized Peer-to-peer Trading Strategy Considering Flexibility of Multiple Microgrids[J]. Electric Power, 2025, 58(9): 194-204, 218.
| MG | 租赁成本/ 元 | 租赁前净负荷 均方差/kW2 | 租赁后净负荷 均方差/kW2 | |||
| 1 | 9.42×106 | 4.99×106 | ||||
| 2 | 3.44×106 | 7.62×105 | ||||
| 3 | 6.83×106 | 4.41×106 |
Table 1 The multi-objective optimization results of each MG
| MG | 租赁成本/ 元 | 租赁前净负荷 均方差/kW2 | 租赁后净负荷 均方差/kW2 | |||
| 1 | 9.42×106 | 4.99×106 | ||||
| 2 | 3.44×106 | 7.62×105 | ||||
| 3 | 6.83×106 | 4.41×106 |
| MG | 参与P2P 交易时微电 网运行成本 | 参与P2P 交易时纳 什议价收益 | 参与P2P 交易时微 电网总成本 | 不参与P2P 交易时微 电网总成本 | 收益提 升值 | |||||
| 1 | 682.88 | |||||||||
| 2 | –928.16 | 682.81 | ||||||||
| 3 | –244.59 | 682.87 |
Table 2 The cost-benefit distribution based on symmetric bargaining 单位:元
| MG | 参与P2P 交易时微电 网运行成本 | 参与P2P 交易时纳 什议价收益 | 参与P2P 交易时微 电网总成本 | 不参与P2P 交易时微 电网总成本 | 收益提 升值 | |||||
| 1 | 682.88 | |||||||||
| 2 | –928.16 | 682.81 | ||||||||
| 3 | –244.59 | 682.87 |
| MG | 非对称议 价因子 | 参与P2P交 易时纳什 议价收益/元 | 参与P2P交 易时MG 总成本/元 | 收益提 升值/元 | 电能贡献 量/(kW·h) | |||||
| 1 | ||||||||||
| 2 | – | 381.89 | – | |||||||
| 3 | –442.40 | 485.07 | – |
Table 3 The cost-benefit distribution based on asymmetric Nash bargaining
| MG | 非对称议 价因子 | 参与P2P交 易时纳什 议价收益/元 | 参与P2P交 易时MG 总成本/元 | 收益提 升值/元 | 电能贡献 量/(kW·h) | |||||
| 1 | ||||||||||
| 2 | – | 381.89 | – | |||||||
| 3 | –442.40 | 485.07 | – |
| 1 | 冀肖彤, 杨东俊, 方仍存, 等. “双碳” 目标下未来配电网构建思考与展望[J]. 电力建设, 2024, 45 (2): 37- 48. |
| JI Xiaotong, YANG Dongjun, FANG Rengcun, et al. Research and prospect of future distribution network construction under dual carbon target[J]. Electric Power Construction, 2024, 45 (2): 37- 48. | |
| 2 | 国家发展和改革委员会能源研究所, 能源基金会. 中国2050 高比例可再生能源发展情景暨路径研究[R]. 北京: 国家发展和改革委员会能源研究所, 2015. |
| 3 | 鞠立伟, 吕硕硕, 李鹏. 新型电力系统需求侧灵活性资源时空协同优化与动态均衡机制研究综述[J]. 电力建设, 2024, 45 (9): 142- 163. |
| JU Liwei, LV Shuoshuo, LI Peng. Review of novel demand-side flexibility resource spatio-temporal co-optimization and dynamic equilibrium mechanism of power systems[J]. Electric Power Construction, 2024, 45 (9): 142- 163. | |
| 4 | 陈培育, 崇志强, 李树青, 等. 基于二级聚集式的端对端电力交易控制策略[J]. 中国电力, 2022, 55 (9): 64- 69. |
| CHEN Peiyu, CHONG Zhiqiang, LI Shuqing, et al. A control algorithm based on two-stage aggregation for P2P energy trading in community microgrids[J]. Electric Power, 2022, 55 (9): 64- 69. | |
| 5 | ZHANG W, XU Y L. Distributed optimal control for multiple microgrids in a distribution network[J]. IEEE Transactions on Smart Grid, 2018, 10 (4): 3765- 3779. |
| 6 | 崇志强, 陈培育, 李树青, 等. 基于合作博弈论的P2P电力交易方法[J]. 电力系统及其自动化学报, 2021, 33 (12): 87- 92, 100. |
| CHONG Zhiqiang, CHEN Peiyu, LI Shuqing, et al. P2P energy trading method based on cooperative game theory[J]. Proceedings of the CSU-EPSA, 2021, 33 (12): 87- 92, 100. | |
| 7 | 郭倬辰, 刘继春, 杨知方, 等. 供电短缺下微网客户与移动储能端对端交易模式及调度策略[J]. 电网技术, 2022, 46 (12): 4873- 4886. |
| GUO Zhuochen, LIU Jichun, YANG Zhifang, et al. Peer-to-peer transaction mode between mobile energy storage and microgrid customers and mobile energy storage scheduling strategy under power shortage[J]. Power System Technology, 2022, 46 (12): 4873- 4886. | |
| 8 |
刘峰伟, 陈佳佳, 赵艳雷, 等. 端对端交易模式下基于移动储能共享的配电系统韧性提升[J]. 电力系统自动化, 2022, 46 (16): 151- 159.
|
|
LIU Fengwei, CHEN Jiajia, ZHAO Yanlei, et al. Resilience enhancement for distribution system based on mobile energy storage sharing in peer-to-peer transaction mode[J]. Automation of Electric Power Systems, 2022, 46 (16): 151- 159.
|
|
| 9 |
NGUYEN S, PENG W, SOKOLOWSKI P, et al. Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading[J]. Applied Energy, 2018, 228, 2567- 2580.
|
| 10 |
ZEPTER J M, LÜTH A, CRESPO DEL GRANADO P, et al. Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage[J]. Energy and Buildings, 2019, 184, 163- 176.
|
| 11 |
ALAM M R, ST-HILAIRE M, KUNZ T. Peer-to-peer energy trading among smart homes[J]. Applied Energy, 2019, 238, 1434- 1443.
|
| 12 |
MEHDINEJAD M, SHAYANFAR H, MOHAMMADI-IVATLOO B. Peer-to-peer decentralized energy trading framework for retailers and prosumers[J]. Applied Energy, 2022, 308, 118310.
|
| 13 | 高红均, 张凡, 刘俊勇, 等. 考虑多产消者差异化特征的社区微网系统P2P交易机制设计[J]. 中国电机工程学报, 2022, 42 (4): 1455- 1470. |
| GAO Hongjun, ZHANG Fan, LIU Junyong, et al. Design of P2P transaction mechanism considering differentiation characteristics of multiple prosumers in community microgrid system[J]. Proceedings of the CSEE, 2022, 42 (4): 1455- 1470. | |
| 14 | 单俊嘉, 董子明, 胡俊杰, 等. 基于区块链技术的产消者P2P电能智能交易合约[J]. 电网技术, 2021, 45 (10): 3830- 3839. |
| SHAN Junjia, DONG Ziming, HU Junjie, et al. P2P smart power trading contract based on blockchain technology[J]. Power System Technology, 2021, 45 (10): 3830- 3839. | |
| 15 | 任景, 周鑫, 程松, 等. 源荷双边参与的高比例新能源电力系统能量与备用市场联合出清方法[J]. 电力建设, 2023, 44 (1): 30- 38. |
| REN Jing, ZHOU Xin, CHENG Song, et al. Joint clearing method of energy and reserve market of power system with high proportion renewable energy considering bilateral participation of source and load[J]. Electric Power Construction, 2023, 44 (1): 30- 38. | |
| 16 |
HUANG C Y, ZHANG M Z, WANG C M, et al. An interactive two-stage retail electricity market for microgrids with peer-to-peer flexibility trading[J]. Applied Energy, 2022, 320, 119085.
|
| 17 | 于娣, 胡健, 张晓杰, 等. 电力P2P交易中的双轮竞价博弈模型[J]. 电力建设, 2023, 44 (7): 21- 32. |
| YU Di, HU Jian, ZHANG Xiaojie, et al. Double-round bidding game model for P2P electricity transactions[J]. Electric Power Construction, 2023, 44 (7): 21- 32. | |
| 18 |
PAUDEL A, CHAUDHARI K, LONG C, et al. Peer-to-peer energy trading in a prosumer-based community microgrid: a game-theoretic model[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (8): 6087- 6097.
|
| 19 | 伍宇铜, 刘洋, 许立雄, 等. 储能辅助下基于多重博弈的社区光伏用户电能交易模型[J]. 电力建设, 2024, 45 (7): 167- 178. |
| WU Yutong, LIU Yang, XU Lixiong, et al. Energy trading model for community photovoltaic users based on multi-game theory with energy storage support[J]. Electric Power Construction, 2024, 45 (7): 167- 178. | |
| 20 | 崔明勇, 宣名阳, 卢志刚, 等. 基于合作博弈的多综合能源服务商运行优化策略[J]. 中国电机工程学报, 2022, 42 (10): 3548- 3564. |
| CUI Mingyong, XUAN Mingyang, LU Zhigang, et al. Operation optimization strategy of multi integrated energy service companies based on cooperative game theory[J]. Proceedings of the CSEE, 2022, 42 (10): 3548- 3564. | |
| 21 | 齐彩娟, 车彬, 杨燕, 等. 考虑新能源消纳与储能参与调频的共享储能主从博弈鲁棒定价方法[J]. 中国电力, 2023, 56 (8): 26- 39. |
| QI Caijuan, CHE Bin, YANG Yan, et al. Master-slave game-based robust pricing method of shared energy storage considering renewable energy accommodation and energy storage participating in frequency modulation[J]. Electric Power, 2023, 56 (8): 26- 39. | |
| 22 |
GE S Y, LI J F, HE X T, et al. Joint energy market design for local integrated energy system service procurement considering demand flexibility[J]. Applied Energy, 2021, 297, 117060.
|
| 23 | 何帅, 刘念, 张泽坤, 等. 基于集合竞价拍卖的大规模多微网能量共享方法[J]. 电力建设, 2023, 44 (8): 128- 141. |
| HE Shuai, LIU Nian, ZHANG Zekun, et al. Call auction mechanism-based energy sharing method for many multiple microgrids[J]. Electric Power Construction, 2023, 44 (8): 128- 141. | |
| 24 | 蒋从伟, 欧庆和, 吴仲超, 等. 基于联盟博弈的多微网共享储能联合配置与优化[J]. 中国电力, 2022, 55 (12): 11- 21. |
| JIANG Congwei, OU Qinghe, WU Zhongchao, et al. Joint configuration and optimization of multi-microgrid shared energy storage based on coalition game[J]. Electric Power, 2022, 55 (12): 11- 21. | |
| 25 |
WEI C, SHEN Z Z, XIAO D L, et al. An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining[J]. Applied Energy, 2021, 295, 117024.
|
| 26 | OSBORNE MJ, RUBINSTEIN A. "Classical models of bargaining" in bargaining and markets[M], 1st ed., San Diego, CA, USA: Academic Press, 1990, 11–3. |
| [1] | WANG Hui, XIA Yuqi, LI Xin, DONG Yucheng, ZHOU Zilan. Research on Low-carbon Operation Strategies for Regional Integrated Energy Systems Based on Multi-agent Three-level Game [J]. Electric Power, 2025, 58(8): 69-83. |
| [2] | WANG Yueping, TAN Qingbo, ZHAO Erdong, TAN Zhongfu, WU Xuehui. Analysis of Three-Part Tariff Mechanism for Cost Pass-Through of Flexibility-Regulated Coal Power Units [J]. Electric Power, 2025, 58(7): 217-226. |
| [3] | WANG Xuanyuan, ZHANG Wei, LI Changyu, XIE Huan, GUO Qinglai, WANG Bin, ZHANG Yuqian. A Method for Calculating the Feasible Operation Region of Active and Reactive Power in Active Distribution Networks Considering Stochasticity [J]. Electric Power, 2025, 58(4): 182-192. |
| [4] | Yumin ZHANG, Yanbin Yin, Xingquan JI, Pingfeng YE, Donglei SUN, Aiquan SONG. Optimal Dispatch of Integrated Electric-Heat Energy System Considering Supply Flexibility of Heat Networks Under Different Operation States [J]. Electric Power, 2025, 58(2): 88-102. |
| [5] | CAO Shuyi, TAO Hongzhu, WANG Qiang, LI Xiaofei, WANG Leibao, GUO Sen. Comprehensive Evaluation of Flexibility Resource Regulation Capability in New Energy Power Systems Based on Hybrid Multi-attribute Decision-making Methods [J]. Electric Power, 2025, 58(11): 62-71, 87. |
| [6] | SONG Zhuoran, ZHANG Yanni, WANG Yang, JIANG Haiwei, LI Jiayu, GAO Hongchao. Impacts of Diverse Operational Modes and Flexibility of Distributed Energy Systems within Electricity Market [J]. Electric Power, 2025, 58(11): 111-121. |
| [7] | Donglei SUN, Xian WANG, Yi SUN, Xiangfei MENG, Yongchen ZHANG, Yumin ZHANG. Polyhedral Uncertainty Set Based Power System Flexibility Quantitative Assessment [J]. Electric Power, 2024, 57(9): 146-155. |
| [8] | Zhiqiang LIU, Jianfeng LI, Li PAN, Zhixuan WANG. Analysis and Prospect of Transformation and Upgrading Effects of Coal-fired Power Units in China [J]. Electric Power, 2024, 57(7): 1-11. |
| [9] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Huanchang WANG, Shuai Zhang, Fengzhan ZHAO. Collaborative Expansion Planning of Source-Grid-Storage in Medium Voltage Distribution System Considering Operational Flexibility [J]. Electric Power, 2024, 57(7): 98-108. |
| [10] | Funian HU, Pengcheng ZHANG, Xiaobo ZHOU, Jun CHEN. Coordinated Optimal Scheduling of Source and Load in Integrated Energy System Considering Flexible Resources [J]. Electric Power, 2024, 57(5): 2-13. |
| [11] | Huihong YUAN, Shile WENG, Liangjin CHEN, Yitao ZHU, Lijun ZHANG, Bei QI. Capacity Configuration for "PEDF" System Driven by Safe and Stable Operation [J]. Electric Power, 2024, 57(11): 102-107. |
| [12] | Jing XU, Tiejun ZHAO, Xiaogang GAO, Ju YE, Lingling SUN. Risk Analysis of Insufficient Flexibility from Regulation Resources in High Proportion Renewable Energy Power Systems [J]. Electric Power, 2024, 57(11): 129-138. |
| [13] | Haishen LIANG, Kangli WANG, Hongyu SONG, Jinna HAO, Jun XIAO. Influence Rules and Mechanism Analysis of Distribution Network Flexibility Degree on Distributed Generator Accommodation [J]. Electric Power, 2024, 57(10): 36-45. |
| [14] | Zhiwen LIU, Yan LI, Chong SHAO, Xinming FAN, Qinghui ZENG. Distribution Network Flexibility Evaluation Method Considering Collaborative Interaction of Flexible Resources [J]. Electric Power, 2024, 57(10): 158-165. |
| [15] | Rui ZHU, Yiding OU, Xiaotian LI, Xingyu LEI, Yuqing ZHOU, Poyang ZHANG, Rui OU. Evaluation of Virtual Power Plant Flexibility Resources Based on External Characteristic Equivalence [J]. Electric Power, 2024, 57(1): 30-39. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
