Electric Power ›› 2025, Vol. 58 ›› Issue (2): 57-65.DOI: 10.11930/j.issn.1004-9649.202402073
• Research on Modeling and Operational Decision of Distributed Flexible Resources in Cities and Towns for Smart Low-Carbon Development • Previous Articles Next Articles
Yening LAI1(), Zhongqing SUN1(
), Zhiping LU2, Qin LIU2
Received:
2024-02-29
Accepted:
2024-05-29
Online:
2025-02-23
Published:
2025-02-28
Supported by:
Yening LAI, Zhongqing SUN, Zhiping LU, Qin LIU. Power Grid Optimization Operation and Resilience Improvement Strategy Considering the Participation of Energy Storage Resource Aggregation[J]. Electric Power, 2025, 58(2): 57-65.
编号 | 节点 | Pmin/MW | Pmax/MW | PC/(MW·15 min–1) | 功率因数 | |||||
R_1 | 13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
R_2 | 8 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
19 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
24 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 |
Table 1 MT configuration within resource aggregate
编号 | 节点 | Pmin/MW | Pmax/MW | PC/(MW·15 min–1) | 功率因数 | |||||
R_1 | 13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
R_2 | 8 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
19 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
24 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 |
编号 | 节点 | Pmax/MW | E/(MW·h) | 效率/% | SOC范围/% | |||||
R_1 | 10 | 0.5 | 1 | 85 | 20~80 | |||||
14 | 1.0 | 2 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_2 | 25 | 0.2 | 1 | 85 | 20~80 | |||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_3 | 5 | 0.2 | 1 | 85 | 20~80 | |||||
10 | 0.5 | 1 | 85 | 20~80 | ||||||
14 | 0.5 | 2 | 85 | 20~80 | ||||||
20 | 0.5 | 1 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
32 | 0.2 | 0.8 | 85 | 20~80 |
Table 2 ESS configuration within resource aggregate
编号 | 节点 | Pmax/MW | E/(MW·h) | 效率/% | SOC范围/% | |||||
R_1 | 10 | 0.5 | 1 | 85 | 20~80 | |||||
14 | 1.0 | 2 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_2 | 25 | 0.2 | 1 | 85 | 20~80 | |||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_3 | 5 | 0.2 | 1 | 85 | 20~80 | |||||
10 | 0.5 | 1 | 85 | 20~80 | ||||||
14 | 0.5 | 2 | 85 | 20~80 | ||||||
20 | 0.5 | 1 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
32 | 0.2 | 0.8 | 85 | 20~80 |
类型 | 节点 | Pmax/MW | 功率因数 | |||
分散式风电 | 20 | 1.5 | –0.95~0.95 | |||
54 | 1.5 | –0.95~0.95 | ||||
90 | 1.5 | –0.95~0.95 |
Table 3 Renewable energy configuration in distribution network
类型 | 节点 | Pmax/MW | 功率因数 | |||
分散式风电 | 20 | 1.5 | –0.95~0.95 | |||
54 | 1.5 | –0.95~0.95 | ||||
90 | 1.5 | –0.95~0.95 |
1 | 罗欣儿, 杜进桥, 田杰, 等. 基于深度强化学习的主动配电网高恢复力决策方法[J]. 南方电网技术, 2022, 16 (1): 67- 74. |
LUO Xiner, DU Jinqiao, TIAN Jie, et al. High resilience decision-making method of active distribution network based on deep reinforcement learning[J]. Southern Power System Technology, 2022, 16 (1): 67- 74. | |
2 |
宋梦, 周佳妮, 高赐威, 等. CPSS视角下城市建筑与配电网高韧性协调运行: 研究述评与展望[J]. 电力系统自动化, 2023, 47 (23): 105- 121.
DOI |
SONG Meng, ZHOU Jiani, GAO Ciwei, et al. High-resilience coordinated operation of urban buildings and distribution networks from cyber-physical-social system perspective: research review and prospect[J]. Automation of Electric Power Systems, 2023, 47 (23): 105- 121.
DOI |
|
3 | 许泽凯, 刘曌, 和敬涵, 等. 新型配电网多虚拟电厂分布式资源聚合与聚合体优化运行方法[J]. 高电压技术, 2024, 50 (1): 105- 116. |
XU Zekai, LIU Zhao, HE Jinghan, et al. Distributed resource aggregation and aggregate optimization operation method of multi-virtual power plant in new power distribution network[J]. High Voltage Engineering, 2024, 50 (1): 105- 116. | |
4 | 宋天琦, 吕志鹏, 宋振浩, 等. 虚拟电厂规模化灵活资源聚合调控框架研究与思考[J]. 中国电力, 2024, 57 (1): 2- 8. |
SONG Tianqi, LV Zhipeng, SONG Zhenhao, et al. Research and thinking on the aggregation and dispatching control framework of virtual power plant's large scale flexible resources[J]. Electric Power, 2024, 57 (1): 2- 8. | |
5 | 周海浪, 刘一畔, 陈雨果, 等. 考虑灵活性收益的需求侧资源可行域聚合方法[J]. 中国电力, 2022, 55 (9): 56- 63, 155. |
ZHOU Hailang, LIU Yipan, CHEN Yuguo, et al. Demand side feasible region aggregation considering flexibility revenue[J]. Electric Power, 2022, 55 (9): 56- 63, 155. | |
6 | 许泽凯, 和敬涵, 刘曌, 等. 基于耦合约束解耦的虚拟电厂动态可行域求解方法[J]. 中国电机工程学报, 2024, 44 (9): 3440- 3452. |
XU Zekai, HE Jinghan, LIU Zhao, et al. Solution method of virtual power plant dynamic feasible region based on decoupling of coupling constraints[J]. Proceedings of the CSEE, 2024, 44 (9): 3440- 3452. | |
7 | 孙科, 陈文钢, 陈佳佳, 等. 基于电动汽车的极端场景多微电网韧性提升策略研究[J]. 电力系统保护与控制, 2023, 51 (24): 53- 65. |
SUN Ke, CHEN Wengang, CHEN Jiajia, et al. A resilience enhancement strategy for multi-microgrid in extreme scenarios based on electric vehicles[J]. Power System Protection and Control, 2023, 51 (24): 53- 65. | |
8 | 孙为民, 孙华东, 何剑, 等. 面向严重自然灾害的电力系统韧性评估技术综述[J]. 电网技术, 2024, 48 (1): 129- 139. |
SUN Weimin, SUN Huadong, HE Jian, et al. Review of power system resilience assessment techniques for severe natural disasters[J]. Power System Technology, 2024, 48 (1): 129- 139. | |
9 | 苏娟, 李拓, 刘峻玮, 等. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J/OL]. 中国电力, 2024: 1–15. (2024-04-07). https://kns.cnki.net/kcms/detail/11.3265.TM.20240403.1840.004.html. |
SU Juan, LI Tuo, LIU Junwei, et al. Review and prospect of modeling method and application scenario of virtual energy storage under integrated energy system[J/OL]. Electric Power, 2024: 1–15. (2024-04-07). https://kns.cnki.net/kcms/detail/11.3265.TM.20240403.1840.004.html. | |
10 |
王文悦, 刘海涛, 季宇. 虚拟电厂可调空间统一建模及其参与调峰市场的优化运行策略[J]. 电力系统自动化, 2022, 46 (18): 74- 82.
DOI |
WANG Wenyue, LIU Haitao, JI Yu. Unified modeling for adjustable space of virtual power plant and its optimal operation strategy for participating in peak-shaving market[J]. Automation of Electric Power Systems, 2022, 46 (18): 74- 82.
DOI |
|
11 | 周天娇, 周任军, 黄婧杰, 等. 储能聚合商自营共享模式下电能交易方法[J]. 电力自动化设备, 2023, 43 (5): 171- 176. |
ZHOU Tianjiao, ZHOU Renjun, HUANG Jingjie, et al. Energy trading method of energy storage aggregators under self-operating and sharing mode[J]. Electric Power Automation Equipment, 2023, 43 (5): 171- 176. | |
12 | 汪锋, 刘智强, 张克勇, 等. 基于分时电价与储能充放电策略的台区可调控资源聚合及调度[J]. 储能科学与技术, 2023, 12 (4): 1204- 1214. |
WANG Feng, LIU Zhiqiang, ZHANG Keyong, et al. Adjustable resource aggregation and scheduling in distribution transformer station areas based on time-of-use price and charge-discharge strategy of energy storage[J]. Energy Storage Science and Technology, 2023, 12 (4): 1204- 1214. | |
13 | TAN Z F, ZHONG H W, WANG X Y, et al. An efficient method for estimating capability curve of virtual power plant[J]. CSEE Journal of Power and Energy Systems, 2022, 8 (3): 780- 788. |
14 | MAURICETTE L, DONG Z H, ZHANG L N, et al. Resilience enhancement of urban energy systems via coordinated vehicle-to-grid control strategies[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (2): 433- 443. |
15 |
TAO R, ZHAO D M, XU C Y, et al. Resilience enhancement of integrated electricity-gas-heat urban energy system with data centres considering waste heat reuse[J]. IEEE Transactions on Smart Grid, 2023, 14 (1): 183- 198.
DOI |
16 |
PILTAN G, PIROUZI S, AZARHOOSHANG A, et al. Storage-integrated virtual power plants for resiliency enhancement of smart distribution systems[J]. Journal of Energy Storage, 2022, 55, 105563.
DOI |
17 |
于松源, 张峻松, 元志伟, 等. 计及热惯性的热电联产虚拟电厂韧性提升策略[J]. 发电技术, 2023, 44 (6): 758- 768.
DOI |
YU Songyuan, ZHANG Junsong, YUAN Zhiwei, et al. Resilience enhancement strategy of combined heat and power-virtual power plant considering thermal inertia[J]. Power Generation Technology, 2023, 44 (6): 758- 768.
DOI |
|
18 |
勇蔚柯, 李扬, 曹阳. 基于需求响应的配电网韧性提升技术研究[J]. 电力需求侧管理, 2022, 24 (2): 20- 26.
DOI |
YONG Weike, LI Yang, CAO Yang. Research on improvement technology of distribution network resilience based on demand response[J]. Power Demand Side Management, 2022, 24 (2): 20- 26.
DOI |
|
19 |
ZHANG S D, GE S Y, LIU H, et al. Region-based flexibility quantification in distribution systems: an analytical approach considering spatio-temporal coupling[J]. Applied Energy, 2024, 355, 122175.
DOI |
20 |
ZHANG T C, WANG J X, LI G Y, et al. Characterizing temporal-coupled feasible region of active distribution networks[J]. IEEE Transactions on Industry Applications, 2022, 58 (5): 5687- 5696.
DOI |
21 |
王思远, 吴文传. 灵活性资源聚合参考模型与量化指标体系[J]. 电力系统自动化, 2024, 48 (3): 1- 9.
DOI |
WANG Siyuan, WU Wenchuan. Aggregation reference model and quantitative metric system of flexible energy resources[J]. Automation of Electric Power Systems, 2024, 48 (3): 1- 9.
DOI |
|
22 | 王炜歆, 王小君, 许寅, 等. 考虑输配协同的电网并行恢复分区及机组启动次序统一优化决策方法[J]. 中国电机工程学报, 2024, 44 (3): 859- 872. |
WANG Weixin, WANG Xiaojun, XU Yin, et al. A synthetic optimal decision-making method for parallel restoration sectionalizing and generator start-up sequence of power grids considering transmission and distribution system coordination[J]. Proceedings of the CSEE, 2024, 44 (3): 859- 872. | |
23 |
TAN Z F, ZHONG H W, XIA Q, et al. Estimating the robust P-Q capability of a technical virtual power plant under uncertainties[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4285- 4296.
DOI |
24 |
TAN Z F, YAN Z, ZHONG H W, et al. Non-iterative solution for coordinated optimal dispatch via equivalent projection: Part II: method and applications[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 899- 908.
DOI |
25 |
张海春, 陈望达, 沈浚, 等. 计及灵活性资源的配电网韧性研究评述[J]. 电力建设, 2023, 44 (12): 66- 84.
DOI |
ZHANG Haichun, CHEN Wangda, SHEN Jun, et al. Review of power distribution network resilience studies considering flexibility resources[J]. Electric Power Construction, 2023, 44 (12): 66- 84.
DOI |
|
26 |
马继洋, 蔡永翔, 唐巍, 等. 考虑电动汽车参与韧性提升的配电网状态平滑切换控制策略[J]. 电力建设, 2024, 45 (5): 29- 36.
DOI |
MA Jiyang, CAI Yongxiang, TANG Wei, et al. Enhancing distribution network resilience: electric vehicle integration in seamless state switching strategy[J]. Electric Power Construction, 2024, 45 (5): 29- 36.
DOI |
|
27 |
王志伟, 王伟, 李德鑫, 等. 冰灾天气下考虑输配协同的电-热联合系统韧性提升策略[J]. 电力建设, 2024, 45 (5): 9- 18.
DOI |
WANG Zhiwei, WANG Wei, LI Dexin, et al. Enhancing resilience in electric-heat combined system: coordinated approach for transmission and distribution network during ice disasters[J]. Electric Power Construction, 2024, 45 (5): 9- 18.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||