Electric Power ›› 2022, Vol. 55 ›› Issue (10): 32-44.DOI: 10.11930/j.issn.1004-9649.202205074
Previous Articles Next Articles
TAN Mingcong1, WANG Lingling1, JIANG Chuanwen1, LIU Hanghang2, WU Liersha3, TANG Jiong3
Received:2022-05-25
Revised:2022-08-04
Online:2022-10-20
Published:2022-10-28
Supported by:TAN Mingcong, WANG Lingling, JIANG Chuanwen, LIU Hanghang, WU Liersha, TANG Jiong. Bi-level Optimization Model of Demand Response Considering Regulation Potential of Load Aggregator[J]. Electric Power, 2022, 55(10): 32-44.
| [1] 艾欣, 徐立敏, 刘汇川, 等. 面向主动需求响应的需求侧荷源二重性建模方法[J]. 中国电力, 2021, 54(6): 183–190 AI Xin, XU Limin, LIU Huichuan, et al. Demand side load source duality modeling method for active demand response[J]. Electric Power, 2021, 54(6): 183–190 [2] 翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53(8): 9–18 ZHAI Jingjing, WU Xiaobei, FU Zhixin, et al. Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J]. Electric Power, 2020, 53(8): 9–18 [3] 卢兆军, 袁飞, 郝泉, 等. 考虑响应特性的需求侧多元可控负荷协同调控策略[J]. 科学技术与工程, 2021, 21(20): 8490–8497 LU Zhaojun, YUAN Fei, HAO Quan, et al. A coordinated regulation strategy of multi-controllable loads in demand side considering load response characteristics[J]. Science Technology and Engineering, 2021, 21(20): 8490–8497 [4] 宋莉, 刘敦楠, 庞博, 等. 需求侧资源参与电力市场机制及典型案例实践综述[J]. 全球能源互联网, 2021, 4(4): 401–410 SONG Li, LIU Dunnan, PANG Bo, et al. Mechanism of demand-side resource participation in the electricity market and typical case practice review[J]. Journal of Global Energy Interconnection, 2021, 4(4): 401–410 [5] CHEN S J, LIU C C. From demand response to transactive energy: state of the art[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(1): 10–19. [6] 中国汽车工业协会, 中国汽车技术研究中心有限公司, 丰田汽车公司. 中国汽车工业发展报告(2020) [EB/OL]. 北京: 先晓书院(社会科学文献出版社) , 2021. [7] 何金松, 叶鹏, 张涛, 等. 面向电力系统应用的空调负荷研究综述[J]. 沈阳工程学院学报(自然科学版), 2019, 15(4): 343–349 HE Jinsong, YE Peng, ZHANG Tao, et al. Research overview of air conditioning load for power system application[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2019, 15(4): 343–349 [8] 高赐威, 张良杰, 杨晓梅. 中央空调负荷聚合及平抑风电出力波动研究[J]. 中国电机工程学报, 2017, 37(11): 3184–3191,3373 GAO Ciwei, ZHANG Liangjie, YANG Xiaomei. Research on load aggregation of central air conditioning and its participation in the operation of power system[J]. Proceedings of the CSEE, 2017, 37(11): 3184–3191,3373 [9] 崔屹峰, 李珍国, 魏思雨, 等. 面向需求响应的温控负荷单元随机选择模型[J]. 电力系统自动化, 2021, 45(19): 126–132 CUI Yifeng, LI Zhenguo, WEI Siyu, et al. Random selection model of thermostatically controlled load units for demand response[J]. Automation of Electric Power Systems, 2021, 45(19): 126–132 [10] 李滨, 黎智能, 陈碧云. 基于DFT的智能园区中央空调负荷调控策略[J]. 电网技术, 2020, 44(7): 2549–2559 LI Bin, LI Zhineng, CHEN Biyun. DFT-based intelligent park central air-conditioning regulation strategy[J]. Power System Technology, 2020, 44(7): 2549–2559 [11] 张怡冰, 刘其辉, 洪晨威, 等. 基于模糊控制的区域电动汽车入网充放电调度策略[J]. 电力自动化设备, 2019, 39(7): 147–153 ZHANG Yibing, LIU Qihui, HONG Chenwei, et al. Charging and discharging dispatch strategy of regional V2 G based on fuzzy control[J]. Electric Power Automation Equipment, 2019, 39(7): 147–153 [12] 吕广强, 魏鑫杰, 郭震. 限制充放电切换次数的电动汽车与光伏发电协同调度研究[J]. 电网技术, 2021, 45(5): 1894–1901 LÜ Guangqiang, WEI Xinjie, GUO Zhen. Coordinated scheduling between electric vehicles and photovoltaic power generation with limited times of charging and discharging switches[J]. Power System Technology, 2021, 45(5): 1894–1901 [13] 刘向军, 牟明亮, 黄绍模, 等. 考虑充电功率衰减的电动汽车两阶段优化调度策略[J]. 电网技术, 2021, 45(7): 2656–2666 LIU Xiangjun, MU Mingliang, HUANG Shaomo, et al. Two-stage optimal scheduling strategy of electric vehicle considering charging power decay[J]. Power System Technology, 2021, 45(7): 2656–2666 [14] 侯慧, 徐焘, 肖振锋, 等. 计及可调控负荷的发用电一体化综合优化调度[J]. 电网技术, 2020, 44(11): 4294–4304 HOU Hui, XU Tao, XIAO Zhenfeng, et al. Generation and load integrated optimal scheduling considering adjustable load[J]. Power System Technology, 2020, 44(11): 4294–4304 [15] 高赐威, 李倩玉, 李扬. 基于DLC的空调负荷双层优化调度和控制策略[J]. 中国电机工程学报, 2014, 34(10): 1546–1555 GAO Ciwei, LI Qianyu, LI Yang. Bi-level optimal dispatch and control strategy for air-conditioning load based on direct load control[J]. Proceedings of the CSEE, 2014, 34(10): 1546–1555 [16] JIN Y W, YU B, SEO M, et al. Optimal aggregation design for massive V2 G participation in energy market[J]. IEEE Access, 2020, 8: 211794–211808. [17] WEI Y, YANG Z H, LIU H M. Optimal dispatching strategy of load aggregators considering peak load shifting[C]//2019 IEEE Innovative Smart Grid Technologies - Asia. Chengdu, China. IEEE, 2019: 2661–2665. [18] SUN B, WU X D, XIE J D, et al. Information gap decision theory-based electricity purchasing optimization strategy for load aggregator considering demand response[J]. Energy Science & Engineering, 2021, 9(2): 200–210. [19] 吴宛潞, 韩帅, 孙乐平, 等. 负荷聚合商多类型需求侧资源激励价格制定一般模型及应用[J]. 电力建设, 2021, 42(1): 1–9 WU Wanlu, HAN Shuai, SUN Leping, et al. A general incentive pricing model and its application for multi-type demand-side resources of load aggregators[J]. Electric Power Construction, 2021, 42(1): 1–9 [20] 龚诚嘉锐, 林顺富, 边晓燕, 等. 基于多主体主从博弈的负荷聚合商经济优化模型[J]. 电力系统保护与控制, 2022, 50(2): 30–40 GONG Chengjiarui, LIN Shunfu, BIAN Xiaoyan, et al. Economic optimization model of a load aggregator based on the multi-agent Stackelberg game[J]. Power System Protection and Control, 2022, 50(2): 30–40 [21] 张晓东, 艾欣, 潘玺安. 考虑用户可调度潜力的负荷聚合商优化调度策略[J/OL]. 华北电力大学学报(自然科学版): 1-16[2021-08-11]. http://kns.cnki.net/kcms/detail/13.1212.TM.20210811.1138.002.html. [22] 陈可, 高山, 刘宇. 基于柔性负荷可控裕度的多时间尺度调峰优化[J]. 电力建设, 2021, 42(4): 69–78 CHEN Ke, GAO Shan, LIU Yu. Optimization of multi-time-scale peak shaving considering controllable margin of flexible load[J]. Electric Power Construction, 2021, 42(4): 69–78 [23] LU N. An evaluation of the HVAC load potential for providing load balancing service[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1263–1270. [24] MARTINEZ C M, HU X S, CAO D P, et al. Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4534–4549. [25] 李宏仲, 张仪, 孙伟卿. 小波包分解下考虑广义储能的风电功率波动平抑策略[J]. 电网技术, 2020, 44(12): 4495–4504 LI Hongzhong, ZHANG Yi, SUN Weiqing. Wind power fluctuation smoothing strategy with generalized energy storage under wavelet packet decomposition[J]. Power System Technology, 2020, 44(12): 4495–4504 |
| [1] | WANG Shiqian, HAN Ding, WANG Nan, BAI Hongkun, SONG Dawei, HU Caihong. Cooperative Scheduling of Active Distribution Network Based on Two Layer Master Slave Game [J]. Electric Power, 2025, 58(9): 105-114. |
| [2] | FU Chengcheng, ZHANG Chunyan, LIU Jianye, JIA Dexiang, LI Dan, WANG Su. Optimal Dispatching Method of Demand-Side Resources with Load Aggregator Participation [J]. Electric Power, 2025, 58(8): 1-11. |
| [3] | WANG Hui, XIA Yuqi, LI Xin, DONG Yucheng, ZHOU Zilan. Research on Low-carbon Operation Strategies for Regional Integrated Energy Systems Based on Multi-agent Three-level Game [J]. Electric Power, 2025, 58(8): 69-83. |
| [4] | LIU hang, SHEN hao, JI Ling, ZHONG Yongjie, CHEN Jiarui, YU Yang. Bi-level Optimization Peak-shaving Strategy for Short-process Steel Enterprises Considering Maximum Demand Based on an Improved RTN Model [J]. Electric Power, 2025, 58(8): 118-129. |
| [5] | GAO Fangjie, SUN Yujie, LI Yi, LE Ying, ZHANG Jiguang, XU Chuanbo, LIU Dunnan. Robust Optimization Scheduling of Island Multi-energy Microgrid Considering Offshore Wind Power to Hydrogen [J]. Electric Power, 2025, 58(7): 68-79. |
| [6] | KONG Lingguo, TIAN Yangjin, KANG Jiandong, FANG Lei, LIU Chuang, CAI Guowei. Bi-level Optimization Configuration for Offshore Independent Energy Islands Considering Coordination of Multiple Electrolyzers under Uncertainties [J]. Electric Power, 2025, 58(7): 80-90, 104. |
| [7] | ZHANG Bohang, QI Jun, XIE Luyao, ZHANG Youbing, ZHANG Boyang. Distributed Model Predictive Frequency Control of Interconnected Power Systems Considering Demand Response [J]. Electric Power, 2025, 58(7): 105-114. |
| [8] | ZHANG Jie, HUA Yufei, WANG Chen. A Demand Side Adjustment Capacity Sharing Model Based on Cooperative Game [J]. Electric Power, 2025, 58(6): 45-55. |
| [9] | WEI Chunhui, SHAN Linsen, HU Dadong, GAO Qianheng, ZHANG Xinsong, XUE Xiaocen. Optimal Scheduling Strategy of Park-level Virtual Power Plant for Demand Response [J]. Electric Power, 2025, 58(6): 112-121. |
| [10] | XU Shijie, HU Bangjie, ZHAO Liang, WANG Pei. Research on Optimal Dispatch with Source-Load Coordination for Micro-energy Grid Based on Energy-Carbon Coupling Model [J]. Electric Power, 2025, 58(4): 1-12. |
| [11] | ZHOU Feihang, WANG Hao, WANG Haili, WANG Meng, JIN Yaojie, LI Zhongchun, ZHANG Zhongde, WANG Peng. Multi-entity Behaviors in Electricity-Carbon-Green Certificate Coupled Markets Based on Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 44-55. |
| [12] | XIANG Shilin, XIANG Yue, WANG Yanliang, LU Yu. Optimization Strategy for Spatiotemporal Cooperative Operation of Multiple Data Centers Considering Load Response Characteristics [J]. Electric Power, 2025, 58(4): 170-181. |
| [13] | Wenjun XU, Gang MA, Yunting YAO, Yuxiang MENG, Weikang LI. Multi-energy Optimal Scheduling of Industrial Parks Considering Green Certificate - Carbon Trading Mechanism and Hydrogen Compressed Natural Gas [J]. Electric Power, 2025, 58(2): 154-163. |
| [14] | QIAO Li, MO Shi, GUO Mingyu, CUI Shichang, ZHANG Zitong, WANG Bo, AI Xiaomeng, FANG Jiakun, CAO Yuancheng, YAO Wei, WEN Jinyu. DLMP Signal-Driven Orientated Inner Approximation Aggregation Scheduling Method for Distributed Resources in Distribution Networks [J]. Electric Power, 2025, 58(12): 50-62. |
| [15] | YU Wanshui, YI Jun, YANG Wenli, MIAO Bo, ZHANG Haotian, CHEN Wenjing, BAO Jixiu, JIN Xianglong. User-Side Dynamic Carbon Responsibility Accounting Method Considering Marginal Carbon Emissions and Demand Response [J]. Electric Power, 2025, 58(12): 86-95. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
